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Introduction: Probability space

Definition (o-Algebra)

If Q is a given set, then a g-algebra F on €2 is a family F of subsets of Q with
the following properties:

Q Ve rF,
Q FeF= FCecF, where F¢ = Q — F is the complement of F in Q,

Q ALA,...eF=A=JAcF

=il

Definition (Measurable Space)

The pair (2, F), where Q is a given set and F a o-algebra on Q is called a
measurable set.
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Introduction: Probability space

Definition (Probability measure)

A probability measure P on a measurable space (2, F) is a function
P:F —[0,1] such that

Q P() =0, P(Q) =1,
Q If A, Ay, ... € F and {A}2, is disjoint (i.e. AiNA; =0 if i # j) then

P <fj A,-> = i P(A).

Definition (Probability Space)

A probability space is a triple (2, F, P) consisting of a set Q (called the sample
space), a o-algebra F of subsets of Q (these subsets are called events), and a
probability measure P on (2, F).
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Introduction: Random variable

Definition (Measurable function)

If (2, F, P) is a given probability space, a function Y : Q@ — R" is called
F-measurable if

Y '(B)={weQ Y(w)eBeF
for all Borel sets B € R".

Definition (Random Variable)

Let (2, F, P) be a probability space. A random variable X is a F-measurable
function X : Q@ — R".

Definition (Probability Distribution)

Let (2, F, P) be a probability space. Given a random variable X : Q — R" a
probability distribution of X on R" is a probability measure ux : R” — [0, 1],
defined by

px(B) = P(X7'(B)).
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Introduction: Expected value

Definition (Expectation or Expected Value)

Let (2, F, P) be a probability space and let X : Q — R" be a random variable
defined on it, then the expected value of X, denoted by E(X), is defined as

BX) = [ X(@)dPw) = [ xdux(x).

if [, [X(w)] dP(w) < oo.

If f:R" — R is Borel measurable and if [, [f(X(w))| dP(w) < oo, then

E(F(X)) = /Q F(X(w)) dP(w) = /]R ) diax ().
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Introduction: Stochastic process

Definition (Stochastic process)

A stochastic process is a parametrized collection of random variables {X;}:e7
defined on a probability space (€2, F, P) and assuming values in R".

@ For each t € T we have a random variable w — Xi(w), w € Q.

@ Given w € Q we can consider the function t — Xi(w), t € T, which is
call a path of X;.
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Introduction: Normal distribution

Definition (Normal distribution)

Let (2, F, P) be a probability space. A random variable X : Q@ — R, is normal
if the distribution of X has a density of the form

(x — p)?

1 1
pX(X)_ W exp (_E o2 )7

where o and p are constants. In other words:

P(X € G) = / px(x) dx, forall Borelsets G C R.
G

We denote as X ~ N(u,o?)

Then X has the next properties

Q E(X) =

Q var(X) =E((X — p)?) = 0*,
The Standard Normal Distribution, has expected value zero and variance one
N(0,1).
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Introduction: Brownian Motion or Wiener process

Definition (Brownian Motion or Wiener process)

A scalar standard Brownian motion, or standard Wiener process, over [0, T] is
a random variable W(t) that depends continuously on t € [0, T| and satisfies
the following three conditions.

© W(0) =0, (with probability 1).
@ For 0 <s <t < T the random variable given by the increment
W (t) — W(s) is normally distributed with mean zero and variance t — s;
equivalently, W(t) — W(s) ~ v/t — s N(0,1), where N(0,1) denotes a
normally distributed random variable with zero mean and unit variance.
© For0<s<t<u<v<T the increments W(t) — W(s) and
W(v) — W(u) are independent.

Discretized Brownian motion:W; = W(t;), t; =jot, 6t = T/N, N € N.
Condition 1: Wy = 0 with probability 1, and conditions 2 and 3 means

M/J':V‘/J'*1+dM/j7.j:172>'“7Na (1)

where each dW; is an independent random variable v/¢ t N(0, 1).
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Discretized Brownian path
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Introduction: Stochastic Integrals

It6 Integral
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The Euler-Maruyama Method

A scalar, autonomous SDE
t t
X(t) = Xo +/ f(X(s))ds +/ g(X(s))dW(s),0<t<T.
0 0

f and g are scalar functions and the initial condition Xp is a random variable.
The second integral on the right-hand side is to be taken with respect to
Brownian motion

The solution X(t) is a random variable for each t.

SDE differential equation form

dX(t) = F(X(t)) dt + g(X(t)) dW(t), X(0) = X0,0 < t < T.

Deterministic SDE: g = 0 and Xp constant

dX(t)/dt = F(X(t)), X(0) = XO.
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The Euler-Maruyama Method

@ At=T/L, LeN, 5j=jAt.
0 X; ~ X(7)).

X(5) = X(r-0)+ [ " F(X(s)) ds + / " g(X(s)) dW(s).

j—1 j—1

The Euler-Maruyama (EM)

X = Xjo1 + F(Xjm1) At + g(Xim1) (W(5) = W(rj-1)).j = 1,2,..., L.
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The Euler-Maruyama Method

Linear SDE

dX(t) = A X(t)dt + p X(t) dW(t), X(0) = X0,
A€ R.

v

X(£) = X(0) exp (()\ _ %,ﬁ) 4 W(t)).
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dX(t) = 2 X(t)dt + X(t) dW(t), X(0) =1,

Erroratt=T, At=Rdt, 6t=2"°

R [X(T) — X7]
4 0.6907
2 0.1595
1 0.0821




Strong Convergence of the EM Method

Definition (Strong converence)

A method is said to have strong order of convergence equal to -y if there exists
a constant C such that

E|X, — X(7)| < CAt",7=nAte [0, T], (2)

and A t sufficiently small.

If f and g satisfy appropriate conditions, it can be shown that EM has strong
order of convergence v = 1.
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Strong Convergence of the EM Method

Strong error at the end-point

eztzong =E|X, — X(T)|,whereLAt =T,

strong 4
er, C<CAt?

for sufficiently small A t.

o

@ 1000 different discretized Brownian paths over [0,1] with § &t = 27°.
@ 5 different stepsizes: At =215t for1 < p<S5.
*]
*]

The function mean is then used to average over all sample paths

The pth element of the average is an approximation to ezti"“g, for

At=2P"15¢

log X" ~ log C + 1 log At.

<
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dX(t) = 2 X(t)dt + X(t) dW(t), X(0) =1,
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Strong Convergence of the EM Method

@ 1000 different discretized Brownian paths over [0, 1] with § t = 27°.
5 different stepsizes: At =2P"1§¢ for 1 < p < 5.

The function mean is then used to average over all sample paths

The pth element of the average is an approximation to ex’;°"#, for

At=2"""5¢.

logex;”"® ~ log C + 5 log A t.

exto"® = C A t? then

log e ~ log C + q log A t.

g = 0.5384 with least squares residual of 0.0266.
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Weak Convergence of the EM Method

Definition (Weak convergence)

A method is said to have weak order of convergence equal to «y if there exists a
constant C such that for all functions p in some class

[Ep(X») —Ep(X(T))| < CAt", 7=nAte]0,T]

and A t sufficiently small.

If f and g satisfy appropriate conditions, it can be shown that EM has weak
order of convergence v = 1.
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Weak Convergence of the EM Method

Weak error at the end-point

exs™ := |[EX; — EX(T)|,whereLAt =T,

everk < CAt
for sufficiently small A t.

@ 50000 different discretized Brownian paths over [0,1] § = A t.
@ 5 different stepsizes: At =210 for 1 < p <5.

@ The function mean is then used to average over all sample paths,
EX(T)=e .
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dX(t) = 2 X(t)dt + X(t) dW(t), X(0) =1,
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Weak Convergence of the EM Method

@ 50000 different discretized Brownian paths over [0,1] § = A t.
@ 5 different stepsizes: At =2P"° for 1 < p < 5.

@ The function mean is then used to average over all sample paths,
EX(T)=e*".
@ eyeek — C At then
weak

Q@ logex?  ~logC+ qlogAt.
@ g = 0.9858 with least squares residual of 0.0508.
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Milstein's Higher Order Method

X(@) =X+ [ fxs)ds+ [ g(x() W)
X = X1t ARG - 1) + 80X~ 1) (W(5) ~ W(r-1))
286 1) 8 (%) (W)~ Wr)f At j=12,.L
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Milstein's Higher Order Method

Population dynamics

dX(t) = r X(t) (K — X(t))dt + 8 X(t) dW(t), X(0)= Xo,

r, K, and 3 are constants.

r=2 K=1 6=0.25and Xo =05
500 different discretized Brownian paths over [0, 1] with § t = 27,

Exact solution: At=4t
5 different stepsizes: At =2Pdtfor3< p < 7.
The function mean is then used to average over all sample paths

The pth element of the average is an approximation to ex;°"#, for

At=2°4t.
@ loge)i™"® ~ log C + log A t.
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dX(t) =

2 X(t) (1 — X(t))dt +0.25 X(t) dW(t), X(0)= 0.5,

milstrong.m
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Milstein's Higher Order Method

r=2,K=1,6=0.25and Xo = 0.5

500 different discretized Brownian paths over [0, 1] with § t = 27,
Exact solution: At=4t

5 different stepsizes: At =2Pdtfor 3<p<7.

The function mean is then used to average over all sample paths

The pth element of the average is an approximation to ex;*"#, for
At=2P§t.

log €X' ~ log C + log A t.
ex:"® = C A t? then

log e ~ log C + q log A t.
g = 1.0184 and resid = 0.0350.
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Linear Stability

Ordinary differential equations

@ dX/dt = A X, where X € C, is constant parameter.
@ Xp exp(At)

° tlim X(t) = 0 for any Xo,

o R{A\} <0
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Linear Stability

Stochastic differential equations
@ dX(t) = AX(t)dt + puX(t)dW(t), X(0) = Xo, \,p € C
@ Mean-square stability
lim EX(t)> =0 <= R{\} + % lul> <0,
@ Asymptotic stability

tlim |X(t)| = 0, with probabilityl <= R{\ + % lul’} <o.

@ Si p =0, equivalent to ODE theory.
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Stability of Euler-Maruyama method

Suppose that the parameters A and p are chosen so that the SDE is stable in
the mean-square or asymptotic sense J

For what range of At is the EM solution stable in an analogous sense? )
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Stability of Euler-Maruyama method

@ Mean-square stability

lim EX? =0 <= [1+AtA\*+Auf <1,

j—oo
@ Asymptotic stability

lim |Xj| = 0, with probabilityl <= Elog |1+ AtA+ VAt N(0,1)| <O0.
J—0o0
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Stability of Euler-Maruyama method

Test: Mean-Square Stability

@ Xp =1 constant, [0,20]
@ )\ = —3 and u = /3 Mean-square stable
@ 50000 different discretized Brownian paths. At=1,1/2,1/4.
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Mean-Square stability of Euler-Maruyama method

Mean-Square: A =-3, 1=V 3

102 I I I I I I I T~ I
0 2 4 6 8 10 12 14 16 18 20

0. Angulo Numerical integration of SDEs



Stability of Euler-Maruyama method

Test: Asymptotic Stability

@ Xp =1 constant, [0,500]
@ )\ =1/2 and = /6 Asymptotically stable, but not mean-square stable.

@ 1 Brownian path. At=1,1/2,1/4.
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Asymptotic stability of Euler-Maruyama method
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Stability region of Euler-Maruyama method
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