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Introduction: Probability space

Definition (σ-Algebra)

If Ω is a given set, then a σ-algebra F on Ω is a family F of subsets of Ω with
the following properties:

1 ∅ ∈ F ,

2 F ∈ F ⇒ FC ∈ F , where FC = Ω− F is the complement of F in Ω,

3 A1,A2, . . . ∈ F ⇒ A :=
∞⋃
i=1

Ai ∈ F .

Definition (Measurable Space)

The pair (Ω,F), where Ω is a given set and F a σ-algebra on Ω is called a
measurable set.
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Introduction: Probability space

Definition (Probability measure)

A probability measure P on a measurable space (Ω,F) is a function
P : F −→ [0, 1] such that

1 P(∅) = 0, P(Ω) = 1,

2 If A1,A2, . . . ∈ F and {Ai}∞i=1 is disjoint (i.e. Ai ∩ Aj = ∅ if i 6= j) then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai ).

Definition (Probability Space)

A probability space is a triple (Ω,F ,P) consisting of a set Ω (called the sample
space), a σ-algebra F of subsets of Ω (these subsets are called events), and a
probability measure P on (Ω,F).
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Introduction: Random variable

Definition (Measurable function)

If (Ω,F ,P) is a given probability space, a function Y : Ω −→ Rn is called
F-measurable if

Y−1(B) := {ω ∈ Ω; Y (ω) ∈ B} ∈ F
for all Borel sets B ∈ Rn.

Definition (Random Variable)

Let (Ω,F ,P) be a probability space. A random variable X is a F-measurable
function X : Ω→ Rn.

Definition (Probability Distribution)

Let (Ω,F ,P) be a probability space. Given a random variable X : Ω→ Rn a
probability distribution of X on Rn is a probability measure µX : Rn → [0, 1],
defined by

µX (B) = P(X−1(B)).
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Introduction: Expected value

Definition (Expectation or Expected Value)

Let (Ω,F ,P) be a probability space and let X : Ω→ Rn be a random variable
defined on it, then the expected value of X , denoted by E(X ), is defined as

E(X ) :=

∫
Ω

X (ω) dP(ω) =

∫
Rn

x dµX (x).

if
∫

Ω
|X (ω)| dP(ω) <∞.

If f : Rn −→ R is Borel measurable and if
∫

Ω
|f (X (ω))| dP(ω) <∞, then

E(f (X )) :=

∫
Ω

f (X (ω)) dP(ω) =

∫
Rn

f (x) dµX (x).
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Introduction: Stochastic process

Definition (Stochastic process)

A stochastic process is a parametrized collection of random variables {Xt}t∈T

defined on a probability space (Ω,F ,P) and assuming values in Rn.

For each t ∈ T we have a random variable ω −→ Xt(ω), ω ∈ Ω.

Given ω ∈ Ω we can consider the function t −→ Xt(ω), t ∈ T , which is
call a path of Xt .
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Introduction: Normal distribution

Definition (Normal distribution)

Let (Ω,F ,P) be a probability space. A random variable X : Ω→ R, is normal
if the distribution of X has a density of the form

pX (x) =
1√

2π σ2
exp

(
−1

2

(x − µ)2

σ2

)
,

where σ and µ are constants. In other words:

P(X ∈ G) =

∫
G

pX (x) dx , for all Borel sets G ⊂ R.

We denote as X ∼ N(µ, σ2)

Then X has the next properties

1 E(X ) = µ;

2 var(X ) = E((X − µ)2) = σ2.

The Standard Normal Distribution, has expected value zero and variance one

N(0, 1).
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Introduction: Brownian Motion or Wiener process

Definition (Brownian Motion or Wiener process)

A scalar standard Brownian motion, or standard Wiener process, over [0,T ] is
a random variable W (t) that depends continuously on t ∈ [0,T ] and satisfies
the following three conditions.

1 W (0) = 0, (with probability 1).

2 For 0 ≤ s < t ≤ T the random variable given by the increment
W (t)−W (s) is normally distributed with mean zero and variance t − s;
equivalently, W (t)−W (s) ∼

√
t − s N(0, 1), where N(0, 1) denotes a

normally distributed random variable with zero mean and unit variance.

3 For 0 ≤ s < t < u < v ≤ T the increments W (t)−W (s) and
W (v)−W (u) are independent.

Discretized Brownian motion:Wj = W (tj), tj = j δt, δ t = T/N, N ∈ N.

Condition 1: W0 = 0 with probability 1, and conditions 2 and 3 means

Wj = Wj−1 + dWj , j = 1, 2, . . . ,N, (1)

where each dWj is an independent random variable
√
δ t N(0, 1).

We will refer to an array ~W = [W0,W1, . . . ,WN ] as a discretized Brownian
path.
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Discretized Brownian path
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Average example
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Introduction: Stochastic Integrals

Itô Integral∫ T

0
h(t) dt ≈

N−1∑
j=0

h(tj) (tj+1 − tj), tj = j δ t

N−1∑
0

h(tj) (W (tj+1)−W (tj)) ≈
∫ T

0
h(t) dW (t).

Stratonovich Integral

N−1∑
j=0

h

(
tj + tj+1

2

)
(tj+1 − tj) ≈

∫ T

0
h(t) dt

N−1∑
j=0

h

(
tj + tj+1

2

)
(W (tj+1)−W (tj)) ≈

∫ T

0
h(t) dW (t).
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The Euler-Maruyama Method

A scalar, autonomous SDE

X (t) = X0 +

∫ t

0

f (X (s)) ds +

∫ t

0

g(X (s)) dW (s), 0 ≤ t ≤ T .

f and g are scalar functions and the initial condition X0 is a random variable.
The second integral on the right-hand side is to be taken with respect to
Brownian motion
The solution X (t) is a random variable for each t.

SDE differential equation form

dX (t) = f (X (t)) dt + g(X (t)) dW (t),X (0) = X0, 0 ≤ t ≤ T .

Deterministic SDE: g ≡ 0 and X0 constant

dX (t)/dt = f (X (t)), X (0) = X0.
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The Euler-Maruyama Method

Numerical discretization

∆ t = T/L, L ∈ N, τj = j ∆ t.

Xj ≈ X (τj).

X (τj) = X (τj−1) +

∫ τj

τj−1

f (X (s)) ds +

∫ τj

τj−1

g(X (s)) dW (s).

The Euler-Maruyama (EM)

Xj = Xj−1 + f (Xj−1) ∆ t + g(Xj−1) (W (τj)−W (τj−1)), j = 1, 2, . . . , L.
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The Euler-Maruyama Method

Linear SDE

dX (t) = λX (t)dt + µX (t) dW (t), X (0) = X0,

λ, µ ∈ R.

Exact solution

X (t) = X (0) exp

((
λ− 1

2
µ2

)
t + µW (t)

)
.
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dX (t) = 2 X (t)dt + X (t) dW (t), X (0) = 1,
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dX (t) = 2 X (t)dt + X (t) dW (t), X (0) = 1,

Error at t = T , ∆ t = R δ t, δ t = 2−8

R |X (T )− XT |
4 0.6907
2 0.1595
1 0.0821

O. Angulo Numerical integration of SDEs



Strong Convergence of the EM Method

Definition (Strong converence)

A method is said to have strong order of convergence equal to γ if there exists
a constant C such that

E|Xn − X (τ)| ≤ C ∆ tγ , τ = n ∆ t ∈ [0,T ], (2)

and ∆ t sufficiently small.

If f and g satisfy appropriate conditions, it can be shown that EM has strong
order of convergence γ = 1

2
.
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Strong Convergence of the EM Method

Strong error at the end-point

estrong
∆ t := E|XL − X (T )|,whereL ∆ t = T ,

estrong
∆ t ≤ C ∆ t

1
2

for sufficiently small ∆ t.

Test

1000 different discretized Brownian paths over [0, 1] with δ t = 2−9.

5 different stepsizes: ∆ t = 2p−1 δ t for 1 ≤ p ≤ 5.

The function mean is then used to average over all sample paths

The pth element of the average is an approximation to estrong
∆ t , for

∆ t = 2p−1 δ t.

log estrong
∆ t ≈ log C + 1

2
log ∆ t.
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dX (t) = 2 X (t)dt + X (t) dW (t), X (0) = 1,

O. Angulo Numerical integration of SDEs



Strong Convergence of the EM Method

Test

1000 different discretized Brownian paths over [0, 1] with δ t = 2−9.

5 different stepsizes: ∆ t = 2p−1 δ t for 1 ≤ p ≤ 5.

The function mean is then used to average over all sample paths

The pth element of the average is an approximation to estrong
∆ t , for

∆ t = 2p−1 δ t.

log estrong
∆ t ≈ log C + 1

2
log ∆ t.

estrong
∆ t = C ∆ tq then

log estrong
∆ t ≈ log C + q log ∆ t.

q = 0.5384 with least squares residual of 0.0266.
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Weak Convergence of the EM Method

Definition (Weak convergence)

A method is said to have weak order of convergence equal to γ if there exists a
constant C such that for all functions p in some class

|Ep(Xn)− Ep(X (T ))| ≤ C ∆ tγ , τ = n ∆ t ∈ [0,T ]

and ∆ t sufficiently small.

If f and g satisfy appropriate conditions, it can be shown that EM has weak
order of convergence γ = 1.
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Weak Convergence of the EM Method

Weak error at the end-point

eweak
∆ t := |EXL − EX (T )|,whereL ∆ t = T ,

eweak
∆ t ≤ C ∆ t

for sufficiently small ∆ t.

Test

50000 different discretized Brownian paths over [0, 1] δ = ∆ t.

5 different stepsizes: ∆ t = 2p−10 for 1 ≤ p ≤ 5.

The function mean is then used to average over all sample paths,
EX (T ) = eλ T .
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dX (t) = 2 X (t)dt + X (t) dW (t), X (0) = 1,
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Weak Convergence of the EM Method

Test

50000 different discretized Brownian paths over [0, 1] δ = ∆ t.

5 different stepsizes: ∆ t = 2p−10 for 1 ≤ p ≤ 5.

The function mean is then used to average over all sample paths,
EX (T ) = eλ T .

eweak
∆ t = C ∆ tq then

log eweak
∆ t ≈ log C + q log ∆ t.

q = 0.9858 with least squares residual of 0.0508.
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Milstein’s Higher Order Method

X (τj) = X (τj−1) +

∫ τj

τj−1

f (X (s)) ds +

∫ τj

τj−1

g(X (s)) dW (s).

Xj = Xj−1 + ∆ f (Xj − 1) + g(Xj − 1) (W (τj)−W (τj−1))

+
1

2
g(Xj−1) g ′(Xj−1) (W (τj)−W (τj−1))2 −∆ t, j = 1, 2, . . . , L.
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Milstein’s Higher Order Method

Population dynamics

dX (t) = r X (t) (K − X (t))dt + β X (t) dW (t), X (0) = X0,

r , K , and β are constants.

Test

r = 2, K = 1, β = 0.25 and X0 = 0.5

500 different discretized Brownian paths over [0, 1] with δ t = 2−11.

Exact solution: ∆ t = δ t

5 different stepsizes: ∆ t = 2p δ t for 3 ≤ p ≤ 7.

The function mean is then used to average over all sample paths

The pth element of the average is an approximation to estrong
∆ t , for

∆ t = 2p δ t.

log estrong
∆ t ≈ log C + log ∆ t.

O. Angulo Numerical integration of SDEs



dX (t) =
2 X (t) (1− X (t))dt + 0.25 X (t) dW (t), X (0) = 0.5,
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Milstein’s Higher Order Method

Test

r = 2, K = 1, β = 0.25 and X0 = 0.5

500 different discretized Brownian paths over [0, 1] with δ t = 2−11.

Exact solution: ∆ t = δ t

5 different stepsizes: ∆ t = 2p δ t for 3 ≤ p ≤ 7.

The function mean is then used to average over all sample paths

The pth element of the average is an approximation to estrong
∆ t , for

∆ t = 2p δ t.

log estrong
∆ t ≈ log C + log ∆ t.

estrong
∆ t = C ∆ tq then

log estrong
∆ t ≈ log C + q log ∆ t.

q = 1.0184 and resid = 0.0350.
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Linear Stability

Ordinary differential equations

dX/dt = λX , where λ ∈ C, is constant parameter.

X0 exp (λ t)

lim
t→∞

X (t) = 0 for any X0,

R{λ} < 0

O. Angulo Numerical integration of SDEs



Linear Stability

Stochastic differential equations

dX (t) = λX (t) dt + µX (t) dW (t), X (0) = X0, λ, µ ∈ C
Mean-square stability

lim
t→∞

EX (t)2 = 0 ⇐⇒ R{λ}+
1

2
|µ|2 < 0,

Asymptotic stability

lim
t→∞

|X (t)| = 0,with probability1 ⇐⇒ R{λ+
1

2
|µ|2} < 0.

Si µ = 0, equivalent to ODE theory.
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Stability of Euler-Maruyama method

Suppose that the parameters λ and µ are chosen so that the SDE is stable in
the mean-square or asymptotic sense

For what range of ∆ t is the EM solution stable in an analogous sense?
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Stability of Euler-Maruyama method

Mean-square stability

lim
j→∞

EX 2
j = 0 ⇐⇒ |1 + ∆ t λ|2 + ∆ |µ|2 < 1,

Asymptotic stability

lim
j→∞
|Xj | = 0,with probability1 ⇐⇒ E log

∣∣∣1 + ∆ t λ+
√

∆ t µN(0, 1)
∣∣∣ < 0.
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Stability of Euler-Maruyama method

Test: Mean-Square Stability

X0 = 1 constant, [0, 20]

λ = −3 and µ =
√

3 Mean-square stable

50000 different discretized Brownian paths. ∆ t = 1, 1/2, 1/4.
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Mean-Square stability of Euler-Maruyama method
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Stability of Euler-Maruyama method

Test: Asymptotic Stability

X0 = 1 constant, [0, 500]

λ = 1/2 and µ =
√

6 Asymptotically stable, but not mean-square stable.

1 Brownian path. ∆ t = 1, 1/2, 1/4.
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Asymptotic stability of Euler-Maruyama method
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Stability region of Euler-Maruyama method
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