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Statistical Shape Analysis

The main aim of Shape Analysis is the description of 
the mean shape of a random object and the analysis of 
its stochastic fluctuations.

It is used to face a widespread problem in several
applications: recognize and classify objects and patterns
(from digital images) through the description of their shape.
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MathematicalMathematical instrumentsinstruments

Look for mathematical tools allowing…

the analysis of random shapes

a good implementation

to study a finite dimensional problem

a “global” description of a shape
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PROBLEM  I : REDUCTION OF A  GEOMETRIC "OBJECT"  BELONGING TO AN  
INFINITE DIMENSIONAL  SPACE  (the contour, the colour of internal parts,…) TO  AN 
ELEMENT OF A FINITE DIMENSIONAL SPACE

LANDMARKS =      A FINITE NUMBER OF ELEMENTS (Usually
POINTS, but also angles, distances, …) WHICH
"CHARACTERIZE"  A TYPICAL OBJECT

ANATOMICAL  LANDMARKS =      HAVING A BIOLOGICAL RELEVANCE
(ANGLE OF AN EYE, A SPECIAL POINT OF THE
SKULL, ETC.)

MATHEMATICAL LANDMARKS =  HAVING  A MATHEMATICAL RELEVANCE
( POINT OF MAXIMUM CURVATURE, ANGLES, 

DISCONTINUITY POINTS ON THE CONTOUR, 
ETC.)

LANDMARKSLANDMARKS
[I.L.Dryden, K.V. Mardia, Statistical Shape Analysis, Wiley, New York, 1998 ]
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EXAMPLE:   

6 6 mathematicalmathematical landmarkslandmarks (+) (+) alongalong the the contourcontour of a T2 vertebra of a mouse of a T2 vertebra of a mouse 
identifiedidentified asas the the pointspoints of of maximummaximum curvaturecurvature
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Every object of the sample is represented by a
configuration matrix X, having dimension m x k, 
containing the m cartesian coordinates of its k 
landmarks.

If we are interested in the form of the objects, 
that is if size is relevant, we have to introduce a 
“summarizing index” also for the size, or size
measure
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A size measure g(X) is a positive function of the 
configuration matrix such that
g(aX) = ag(X)
for every positive scalar a.

A commonly used size measure is the centroid
distance S(X), that is the mean quadratic deviation
from the center of mass of the landmarks
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Coordinates and Shape Spaces

A further dimensional reduction can be obtained by 
transforming the landmarks coordinates so that the effects 
of rotations, translations and scaling are eliminated.
This transformation can be performed in various ways, 
obtaining thus different types of coordinates, and, 
correspondigly, different types of shape spaces.
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First (most straightforward) method: Bookstein
Coordinates

Let (xj; yj), (j = 1,…, k) be k landmarks in a plane (i.e. 
we are working in m = 2 dimensions. E.g. on digitized
images of objects). Bookstein suggests to label
properly the landmarks with numbers and to remove
the effects of scaling and rototranslation by shifting, 
rotating and rescaling all the points so that the 
landmarks 1 e 2 are moved into the positions ( -1/2 , 
0), ( 1/2 , 0), respectively (or, more in general, into two 
points chosen as symmetric with respect to the origin, 
to preserve possible symmetries). 
The shape coordinates will then be the kx2 pairs
of coordinates of the remaining landmarks. 
We say that landmarks 1 and 2 form the basis of the 
object.
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Transformation of triangle (3 landmarks) in 
Bookstein coordinates
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Kendall Coordinates

Kendall coordinates are similar to Bookstein coordinates, 
but translations are removed in a different way. To
remove translations, in fact, the Helmert submatrix H is
used. It is obtained from the k x k Helmert matrix deleting
the first line.

The full Helmert matrix H F of order k, commonly used in 
Statistics, is a particular orthogonal matrix composed in 
the following way:
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By multiplying X by HF we obtain a new matrix containing in 
the first line (corresponding to the first new landmark) the 
coordinates of the center of mass of the landmarks, 
multiplied by the factor

Thus the product of X by HF corresponds to a translation of 
the first landmark into the center of mass of the landmarks, 
eliminating thus the “specific position” of the random object.

The shape variability is described by the coordinates of the 
remaining k-1 landmarks, that’s why the first line of HF,  
corresponding to the center of mass of the original
landmarks, is neglected.
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In general:

In order to define mathematically the concept of shape, we need
to introduce a suitable metric space, so that every shape will be
represented by a point in this space. 
Also a suitable distance in this space will be introduced which
will tell us if and how much two objects will have different
shapes.
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Distances in the shape space
In order to define the concepts of mean shape and of its variance a distance in 
the shape space must be introduced, to measure the differences between
various objects.
Let us consider two configuration matrices X1 and X2 of k  points in m 
dimensions, having preshape Z1 and Z2 (preshape= configuration after the 
elimination of translation)

Definition. The full Procrustean distance between X1 and X2 is
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Estimate of the mean shape
Let w1...wn be the configurations of the  landmarks of n centered
objects, that is we translate the configurations so that the center of 
mass of the landmarks of each object coincides with the origin of the 
coordinate system.
The complete procrustean estimate of the mean shape, or complete 
procrustean mean shape is obtained by minimizing with respect
to the sum of  the squares of the complete Procrustean distances
of every wi from a mean unknown configuration having unit size, i.e.
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Estimate of the Standard deviation

An estimate of the variability of the shape is provided by the square
root of the sum of the deviates of the distances of every
configuration from the mean shape, that is the quantity
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Tangent space coordinates

The tangent space is the linearised version of the shape space (which is NON 
EUCLIDEAN) in the neighborhood of a particular point (the pole of the tangent 
projection), which is usually chosen as a mean shape obtained from the dataset of interest.
We need to pass from the non-euclidean shape space to a linearised euclidean one in order 
to apply the usual techniques  of multivariate statistics, based on the propagation of 
gaussian distributions over linear transformations.

In case of planar data, one of the most used coordinates system is given by the Kent’s 
partial Procrustes tangent coordinates:
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The approximation via the tangent coordinates is good only if the 
objects forming the sample are represented by points in the shape
space which are CLOSE to the pole γ. 

Suitable distances in the tangent space (Euclidean, Mahalanobis, 
etc.) may lead to automatic classification, via the usual techniques
of discriminant analysis. 

γ

Shape
space Tangent space
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Hypothesis testing can be performed in the tangent
space, to compare mean shapes of different samples

Hypothesis testing

or to test the equality of the mean shape of a sample
with a particular shape, of the type

These tests could be used to compare the mean
shapes resulting from experiments performed with
different physical/chemical/environmental
parameters.

against

against
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Application 1 Application 1 [Braghieri, Micheletti, 2000]
Temperature dependent polymer crystallizationTemperature dependent polymer crystallization

Temperature 
gradient in the 

vertical direction

110 C

140 C

o

o

What is the minimum 
temperature difference at 
which the shape of two
crystals is significantly

different?
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In order to describe the shape of a crystal we used 5 mathematical 
landmarks chosen as the vertices and the center of the rectangle

circumscribed to the crystal

LandmarksLandmarks::
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We divided the domain into 6 horizontal stripes, according to the following table.
Every crystal belongs to the stripe which contains its center of mass

26125 C122.5 C6

136122.5120 C5

118120 C117.5 C4

104117.5 C115 C3

129115 C112.5 C2

432112.5 C110 C1

N. OF 
CRYSTALS

TEMP. OF THE 
LOWER EDGE

TEMP. OF THE 
UPPER EDGE

STRIPE N.
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Clusters of the 5 mathematical landmarks obtained from the 
sample of simulated crystals coming from the first stripe, using the 
Kent partial tangent coordinates, and the complete mean
procrustean shape (black crosses).
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We compared the mean shapes of the different stripes to see if they were
significantly different, with the following results (F=value of the statistics, 
P=correspondent p-value)

F=8.77
P=0.00000

1

F=5.56
P=0.00003

F=5.35
P=0.00006

F=4.53
P=0.00029

F=2.49
P=0.022

6

F=8.77
P=0.000001

F=10.95
P=0.00000

F=4.94
P=0.00008

7

F=7.43
P=0.00000

1

F=22.46
P=0.00000

5

F=5.56
P=0.00003

F=10.95
P=0.00000

F=6.39
P=0.00000

3

F=4.8
P=0.00012

F=22.16
P=0.00000

4

F=5.35
P=0.00006

F=4.94
P=0.00008

7

F=6.39
P=0.00000

3

F=3.73
P=0.00147

F=23.94
P=0.00000

3

F=4.53
P=0.00029

F=7.43
P=0.00000

1

F=4.8
P=0.00012

F=3.73
P=0.00147

F=16.2
P=0.00000

2

F=2.49
P=0.022

F=22.46
P=0.00000

F=22.16
P=0.00000

F=23.94
P=0.00000

F=16.2
P=0.00000

1
654321stripe

Since all the p-values are smaller than 0.05, we may reject at a 95% level0H
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Problems:
• The choice of Landmarks is crucial, usually is subjective
and done by an expert, and different choices may lead to
different results.
• In some applications, it is not clear how landmarks can be 
“ordered” (labeled). Different choices in the labelling may 
lead to different results.

A need of standards is highly required in this framework!
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SizeSize functionsfunctions + + StatisticsStatistics::

A statistical-geometrical technique (and related software) for
random shapes analysis and classification, with reduction of 
subjectivity.

We will emphasize two working examples:
1. quality control in litographic processes in microelectronics
2. recognition of normal and tumor cells
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Size Functions: definition
[Frosini, Landi, 1999-2004]

Let us consider a pair (M,ϕ) where
• M is a topological space (sufficiently regular)
• ϕ : M → IR is a continuous function, called measuring function

Definition. We shall call Size Function associated with (M,ϕ) the 
function

L(M,ϕ) : IR × IR → IN ∪ {+∞}
defined by setting L(M,ϕ) (x,y) equal to the number of equivalence
classes into which the set M〈ϕ ≤ x〉 = { P ∈ M : ϕ (P) ≤ x } is
divided by the relation of 〈ϕ ≤ y〉 - homotopy, where two points
P, Q ∈ M are 〈ϕ ≤ y〉 - homotopic if and only if either P = Q or a 
continuous path γ : [0,1] → M, joining P and Q, exists in M such
that ϕ (γ(t)) ≤ y for every t ∈ [0,1]. 
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Size Functions: example and 
geometric interpretation

80 100 120 140 160 180

80

100

120

140

160

180

x  

y  

0 1 

2 

∞ + 

M = ellipse
ϕ = distance from B

For x < y, L(M,ϕ) (x,y) is equal to the number of arcwise connected
components of M〈ϕ ≤ y〉 containing at least one point of M〈ϕ ≤ x〉.
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Size Functions: main properties (1) 
[Frosini, Landi, 1999-2004]

• For x < y, cornerpoints and cornerlines uniquely
determine the value of  L(M,ϕ) almost everywhere.

0.5 1 1.5 2

0.5

1

1.5

2

x  

y  

all information about the shape under study is
conveyed by a finite number of variables. 

cornerline

cornerpoint
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Size Functions: main properties (2)

• The number of cornerlines (with their multiplicities) 
is equal to the number of arcwise connected
components of the object; the location of cornerpoints
is linked to couples of maximum, minimum or saddle
values of the measuring function.

• The only (crucial!) choice which must be done for
the geometric description of the shape is the 
measuring function. 
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The The crucialcrucial choicechoice ofof
the the measuringmeasuring functionfunction (1)(1)

Distinct ϕ lead to different size functions

sometimes we need to use more than one ϕ
ϕ gives to the size function the desired invariance properties
a proper choice of ϕ may emphasize the shape features of the 
object M which are outstanding in our application

Open problem: choice of the optimal ϕ
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The The crucialcrucial choicechoice ofof
the the measuringmeasuring functionfunction (2)(2)

−20 0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

x  

y  

0 1 

2 3 

+ ∞ 

B 

B 

ϕ = dist. from the center of mass: invariance with respect to isometry
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small displacements of cornerpoints and cornerlines
small triangles along the diagonal y = x

Robustness of the Size Functions
with respect to perturbations on a shape

80 100 120 140 160 180

80

100

120

140

160

180

x  

y  

0 1 

2 

M = “noisy” ellipse
ϕ = distance from B
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The cost to move to is computed via the pseudodistance

Size Functions comparison: Matching Distance
[D’Amico, Frosini, Landi, 2005]

x  

y  

b β 

a 

α 

c 

The matching distance compares two size functions by measuring the “cost” of 
overlapping their sets of cornerpoints and cornerlines, by minimizing the 
longest movement.
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StabilityStability of the of the MatchingMatching DistanceDistance

For every ε ≥ 0 holds [D’Amico, Frosini, Landi, 2005]

where is a perturbation of φ due to a perturbation on M .ϕ~

εεϕϕ ϕϕ ≤⇒≤−∈ ),(|)(~)(|sup )~,(),( MMmatchMP dPP ll
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Application 1:litography in 
microelectronics

[in collaboration with F. Terragni, Universidad
Politecnica de Madrid, 

M.Vasconi, E.Severgnini,
STMicroelectronics, Agrate Brianza (Milan)]
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GOALGOAL
“global” description of a   
sample of shapes
impressed with standard 
process conditions
procedure to classify
“good” and “bad” shapes

AnalysisAnalysis of of ““criticalcritical”” shapesshapes
impressedimpressed on a on a siliconsilicon wafer (2)wafer (2)

[data collected at STMicroelectronics, Agrate Brianza (Milan)]
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AnalysisAnalysis of of ““criticalcritical”” shapesshapes
impressedimpressed on a on a siliconsilicon wafer (3)wafer (3)

0.5 1 1.5 2

0.5

1

1.5

2

x  

y  

0 500 1000 1500
20

40

60

80

100

120

140

160

180

P
i

ϕ = dist. from
the center of 

mass algorithm

noise filtering
+

edge detection

B = center of 
mass of the black 
pixels
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ClustersClusters of of cornerpointscornerpoints

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

x

y

1 

2 

3 

4 
5 

By computing and 
overlapping the size
functions related to

different images of the 
same kind of pattern,
we obtain clusters of 

cornerpoints because of the 
randomness of its shape

and thanks to size functions
robustness. 

Each cluster is formed by
one cornerpoint for each

image.

cornerpoints along y = x due to noise have been filtered out
cornerlines (identified with their abscissas) can be analysed

in a similar way
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ConfidenceConfidence regionsregions forfor a a ““wellwell--impressedimpressed”” shapeshape

106 108 110

204

205

206

207

208

cluster 1

80 82 84

191

192

193

194

195

cluster 2

35 36 37 38 39

181

182

183

184

185

cluster 3

41 42 43 44 45

176

177

178

179

180

cluster 4

28 30 32

173

174

175

176

177

cluster 5

Robustness of 
size functions

+
Cluster analysis

based on the 
Matching
Distance

+
Research of 

outliers
in 2-D samples
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ResultsResults

106 108 110

204

205

206

207

208

cluster 1

80 82 84

191

192

193

194

195

cluster 2

35 36 37 38 39

181

182

183

184

185

cluster 3

41 42 43 44 45

176

177

178

179

180

cluster 4

28 30 32

173

174

175

176

177

cluster 5

106 108 110

204

205

206

207

208

cluster 1

80 82 84

191

192

193

194

195

cluster 2

35 36 37 38 39

181

182

183

184

185

cluster 3

41 42 43 44 45

176

177

178

179

180

cluster 4

28 30 32

173

174

175

176

177

cluster 5

All cornerpoints internal: well-impressed Many cornerpoints external: bad-impressed
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ResultsResults and and ConclusionsConclusions

Results consistent with expectations.
Results have evidenced a higher
sensitivity of the shapes to the focus 
offset variation than to the laser energy.
Global and objective description of the 
impressed shapes, which can improve
the quality control process of devices.
Automatic procedure to recognize
structures not showing “well-
impressed” shapes.
Method which can be extended to other
structures or applications.

All cornerpoints inside the confidence
regions
One cornerpoint outside the confidence
regions
More than one cornerpoint outside the 
confidence regions

Focus offset

Laser energy

Experiments on a wafer
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Application 2: automatic recognition of tumor cells
(Data provided by G.Landini, University of Birmigham)

Normal Cell Tumor Cell
Nuclear profiles have been taken from images of cells of istological samples of  
“normal” or “tumor” zones of the epithelial tissues of the mouth. The nuclei are 
different mainly because of the different irregularities of the contour.

In order to classify automatically the nuclei,  G. Landini used quantities related to the 
asymptotic fractal dimension of the boundary of the cells to describe their shape (3 
landmarks). The Discriminant Analysis applied to these landmarks  led to a correct 
recognition of the 78.8% of the analyzed nuclei (88% of the normal ones and 70.2% of 
the tumor ones) .
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Analysis with size functions

0 500 1000 1500
20

40

60

80

100

120

140

160

180

P
i

ϕ = dist. 
from

the centre
of mass

edge detection
B = centre of 
mass  of the white
pixels .B

Algorithm
(discrete size

functions)
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Clusters of cornerpoints

By computing the size
functions related to

different images of the 
two groups, we obtain

two rather mixed
clusters of cornerpoints, 

because of the large
variance of the 

randomness of the 
shapes. 
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Classification with NND + matching distance

In order to perform the classification we used a nearest 
neighbours distance (NND) technique:
For any new cell C which must be classified we compute 
the distance of its size function from the other cells of the 
sample (already classified), via the matching distance. 
Then the k cells which are nearest to  C are selected, and 
C is assigned to the class which is more frequent over the 
k nearest neighbours.

k= bandwidth
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Problems:
• cornerpoints located close to the diagonal are due to

“low level” randomness (small perturbations), which is
usually not relevant to identify the class to which the 
nucleus belongs: we have to filter out the “noise”

• computational costs to compute the matching distance
are related to the number n of cornerpoints which are 
retained after the filtering. What is the “correct” filtering?

In our application we retained only the 3 cornerpoints
most distant from the diagonal

Classification with NND + matching distance



Lipari, september 2009
48

76.68%83.28%70.53%k=15

77.23%80.41%73.84%k=11

78.22%82.02%74.25%k=17

75.83%80.79%71.21%k=7

totalOf normal
cells

Of tumor cells% of correct recognition

Experimental Results: ϕ= distance from center of mass

k= n. of nearest neighbours
k=7 and k=15 are the two possible optimal choices in this case
We used a leave-one-out method in order to compute the percentage of correct
recognition
Reminder of Landini’s correct recognition: 
Tumor: 70.2% , Normal: 88% , Total: 78.8%

Sample size= about 700 cells for each class.
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We also tested the results obtained with another measuring
function, defined as follows:
Let B be the center of mass of the image
For every P belonging to the countour of the cell we define
ϕ(P) = # of intersections of a circle centered at B passing through 
P with the contour of the nucleus
Example:

ϕ (P)=4
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Experimental Results: ϕ= intersection with a circle

55.97%78.30%35.20%k=7

56.18%

total

76.69%37.11%k=15

Of normal
cells

Of tumor cells% of correct recognition

The results are in general worst than what was obtained with
the distance from the center of mass
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56.18%76.69%37.11%Intersections with circle

76.68%

total

83.28%70.53%Distance from center of 
mass

Of normal
cells

Of tumor cells% of correct recognition
k=15

Comparison of the two measuring functions

Using k=15 with both measuring functions, we have
• a better recognition of the normal cells in both cases
• a big improvement in the recognition of tumor cells with the distance
from the center of mass

These results are related to the shape of the distributions of the distances
of the objects in the two classes: the study of the distributions may lead to
a technique to identify an optimal measuring function.
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