
Methods of stochastic geometry, and related
statistical problems in Biology and Medicine

Vincenzo Capasso1,2 and Alessandra Micheletti1,2

1 Dipartimento di Matematica, Università degli Studi di Milano,
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1 Introduction

In his pioneering book entitled ”On Growth and Form”, [DT17], D’Arcy
Thompson claimed that ”THERE IS AN IMPORTANT RELATIONSHIP
BETWEEN THE FORM OR SHAPE OF A BIOLOGICAL STRUCTURE
AND HIS FUNCTION”. This leads to the important idea that in Biomedicine
the analysis of the morphology of patterns may lead to the diagnosis of mal-
functioning of an organ or organism. Actually many processes of interest are,
in general, stochastic both in time and space, so that a statistical analysis of
stochastic geometries is required.

The scope of this presentation is then to introduce relevant nomenclature
and mathematical methods for the analysis of geometries related to patterns
of biomedical interest, thus providing a guided tour in a selected bibliography.

First of all let us introduce the current terminology in this framework.
As a working example let us consider the analysis of the random network

associated with vasculogenesis and tumor-driven angiogenesis (see Figures
1,2, 3, 4). The study of angiogenesis has such potential for providing new
therapies that it has received enthusiastic interest from the pharmaceutical
and biotechnology industries. Many of the compounds now under investigation
inhibit angiogenesis and thus the growth of the cancer.

These structures induce a random division of the relevant spatial region,
known as random tessellation (see Figures 4,5). A quantitative description
of the spatial structure of a tessellation can be given, in terms of the mean
densities of interfaces (n-facets; n = 0 for vertices, n = 1 for lines – edges,
fibers, etc. – n = 2 for faces, and so on, up to the full dimension d of the
relevant space).

Statistical methods for the estimation of vessel densities may offer signifi-
cant tools for diagnosis, and dose/response analysis in medical treatments.

We will present a mathematical framework for modelling random geo-
metric structures, so to define in a rigorous way geometric densities of such
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Fig. 1. Vascularization of an allantoid (from [CFD99]).

Fig. 2. Angiogenesis on a mouse cornea [Credit: Dejana et al [CZD02]] (left). A
simulation of an angiogenesis due to a localized tumor mass (black region on the
right) (from [CA99])(right).

structures. Correspondingly we propose statistical estimators of such densities
which, in general, are not spatially homogeneous(see e.g. [BR04]).

In the modelling and statistical analysis of the above mentioned systems it
is of great importance to handle random closed sets of different (even though
integer) Hausdorff dimensions, usually smaller than the dimension d ∈ N of
the relevant space.

Here an original approach is reported, recently proposed by the authors,
who have suggested to cope with these problems by introducing generalized
densities (distributions) á la Dirac-Schwartz, for both the deterministic case
and the stochastic case. In this last one, mean generalized densities are mean-
ingful [CV07, ACV06].

The above approach also suggests methods for the statistical estimation of
geometric densities of the stochastic fibre system that characterize the mor-
phology of a real vascular system. Here we apply such methods to real data,
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Fig. 3. Response of a vascular network to an antiangiogenic treatment (from [JC01]).

Fig. 4. A real picture showing a spatial tessellation due to vascularization of a
biological tissue: endothelial cells form a vessel network (from [Ser03]). See also
Fig. 5 for a simulation of a stochastic tessellation generated by a birth-and-growth
process.

taken from the literature, and to simulated data, obtained by existing com-
putational models of tumor-induced angiogenesis; indeed these methods can
be used for validating computational models, and for monitoring the efficacy
of possible medical treatment [CM08].

In Section 2 basic concepts of stochastic geometry have been introduced. In
Sections 3, 4, based on a theory of random distributions á la Dirac-Schwartz,
mean geometric densities are defined for absolutely continuous random sets.
In Section 5 applications to the study of random tessellations are presented.
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Fig. 5. n−facets for a tessellation in R2

Section 6 is devoted to the presentation of an original statistical approach
for estimating geometric densities of stochastic fibre systems, that characterize
the morphology of a real vascular system. In Section 7 a series of experimental
results are reported, which show the power of this approach for the estimation
of such densities for vascular systems, either real or simulated.

2 Stochastic Geometry

A relevant aspect of stochastic geometry is the analysis of the spatial structure
of objects which are random in location and shape. Given a random object
Σ ∈ Rd, a first quantity of interest is for example the probability that a point
x belongs to Σ, or more in general the probability that a compact set K
intersects Σ.

The theory of Choquet-Matheron [Mat75, SKM95], shows that it is pos-
sible to assign a unique probability law PΣ associated with a RACS (random
closed set) Σ ∈ Rd on the measurable space (F , σF ) of the family of closed
sets in Rd endowed with the σ-algebra generated by a suitable topology, by as-
signing its hitting functional TΣ . Given a probability space (Ω,A, P ), a RACS
Σ is a measurable function

Σ : (Ω,A) −→ (F , σF ).

The hitting functional of Σ is defined as

TΣ : K ∈ K 7−→ P (Σ ∩K 6= ∅),

where K is the family of compact sets in Rd.
We shall denote by EΣ , or simply by E, the expected value with respect

to the probability law PΣ .
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We may estimate directly the hitting functional TΘt(K), for a sufficiently
large family of compact sets K and for different time instants t, as follows.
In Figure 6 the hitting functional has been estimated for a naive simulated
example of tumor driven angiogenesis; vessels are growing from left to right
driven by a tumor located along the left side of the shown window. Due to the
vertical homogeneity we have divided the window of observation into (locally)
homogeneous subwindows, and overlapped to any of them a lattice of points
x1, . . . , xn such that (K⊕xi)∩(K⊕xj) = ∅, for any i 6= j. For each subwindow
we have computed the following estimator

T̂Θt(K) =
1
n

n∑

i=1

1[(K⊕xi)∩Θt 6=∅].

This is a generalization of a classical estimator of T̂Θt({x}) proposed in
the relevant literature (see e.g. [SKM95]).

In several real applications it is of interest to study random closed sets of
different Hausdorff dimensions. For definitions and basic properties of Haus-
dorff measure and Hausdorff dimension see, e.g., [AFP00, Fal85, Fed96]. De-
noting by Hn the n-dimensional Hausdorff measure, we recall that H0 is the
usual counting measure; for any Borel set B ⊂ R, Hd(B) coincides with the
usual d-dimensional Lebesgue measure of B; for 1 ≤ n < d integer, Hn(B)
coincides with the classical n-dimensional measure of B if B ∈ BRd (the Borel
σ-algebra of Rd) is contained in a C1 n-dimensional manifold embedded in
Rd. Further, we recall that the Hausdorff dimension of a set A ⊂ Rd is defined
as

dimH(A) := inf{0 ≤ s < ∞|Hs(A) = 0},
so that, in particular, a point has Hausdorff dimension 0, a curve (or a fibre)
has Hausdorff dimension 1, a hypersurface in Rd has Hausdorff dimension
d− 1. Note that the Hausdorff dimension of a set A need not to be an integer
(e.g., consider the Cantor set), and dimH(A) = s does not imply that Hs(A)
is positive and finite (we may have dimH(A) = s and Hs(A) = 0, or Hs(A) =
∞).

We say that a random closed set Θ has Hausdorff dimension n if dimHΘ(ω) =
n for a.e. ω ∈ Ω; in such case, in the following we also write Θn to remind its
Hausdorff dimension.

3 Generalized densities

In the sequel we will refer to a class of sufficiently regular random closed sets
in the Euclidean space Rd, of integer dimension n. We denote by Br(x) the
ball with center x and radius r; bn denotes the volume of the unit ball in Rn. If
An is a sufficiently regular (deterministic) closed set in Rd, having Hausdorff
dimension n < d, we have
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Fig. 6. Estimate of the hitting functional T̂Θt(K), for different instants t of a (naive)
simulation of an angiogenesis, whose vessels develop from the left to the right. The
chosen compact set K is a vertical segment of length 6 pixels, which has been moved
into vertical stripes in the pictures, which show a vertical spatial homogeneity.

lim
r→0

Hn(An ∩Br(x))
bdrd

= lim
r→0

Hn(An ∩Br(x))
bnrn

bnrn

bdrd

=
{∞ Hn-a.e. x ∈ An,

0 ∀x 6∈ An.

so that, in analogy with the usual Dirac delta function δx0(x) associated with
a point x0 ∈ Rd (a 0-regular closed set), we may introduce the following
definition [KF70].
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Definition 1 (Generalized density). We call generalized density (or, briefly,
density) associated with An, the quantity δAn

, defined by

δAn
(x) := lim

r→0

Hn(An ∩Br(x))
bdrd

,

finite or not.

If Θn is a random closed set in Rd, the measure

µΘn(·) := Hn(Θn ∩ ·)
is a random measure, and consequently (δΘn

, f) =
∫
Rd f(x)δΘn

(x) dx, is a real
random variable for any test function f .

A formal definition of mean generalized density can be given by considering
the expected value of the random measure Hn(Θn ∩ ·)

E[δΘn
](x) := lim

r→0

E[Hn(Θn ∩Br(x))]
bdrd

.

It can be shown [CV08] that for any test function f, we have
∫

Rd

f(x)E[δΘn ](x) dx = E
[∫

Rd

f(x)δΘn(x) dx

]
;

so that, formally, we may exchange integral and expectation.
The case of interest in applications [BR04, Mol92, Hahn99] is the one in

which the mean generalized density is a classical function.
When n = d, a classical mean density always exists, and it is known as

volume density VV (x) := P(x ∈ Θd); in material science it is known as the
(degree of) crystallinity [Avr39, K37].

In a tessellation (see Section 5), E[δΘn(x)] is known as n-facet density, for
any other integer 0 ≤ n ≤ d − 1; for fibre processes (n = 1) we speak of
fibre density, etc. Figure 7 shows the estimation of the evolution of the vessel
density for the simulation in Figure 2, by means of the estimators proposed
in Section 6.

4 Approximation of mean densities

In many real applications (see e.g. [BR04] and [SKM95]), it is of interest the
estimation of the local mean density E[δΘn ] of a lower dimensional random
closed set such as a fibre process of dimension n = 1 in a space of dimension
d > 1.
For facing the problem of the zero ν2-measure for points or lines in R2 it is
natural to make use of their 2-D box approximations. As a matter of fact, a
computer graphic representation is usually provided in terms of pixels, which
can only offer a 2-D box approximation of points or lines in R2.



8 V.Capasso, A.Micheletti

time : t1 time : t2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

x

λ 
(x

)

time: t
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

6

8

10

12

14

16

18

20

22

24

x

λ 
(x

)

time: t
2

Fig. 7. Estimate of the density(mean length per unit area) of fibres, at two different
instants of a simulation of a tumor-driven angiogenesis, taken from [CA99]. The
estimators are described in Section 6. Dashed line= λ̂1

k,r,p, dotted-dashed line=

λ̂2
k,r,p

Thus, given a random closed set Θn with Hausdorff dimension n < d, we
will consider the enlarged set Θn⊕r , which is now of dimension d, and hence
of nontrivial measure νd.
On the other hand, we may observe that P(x ∈ Θn⊕r ) = TΘn(Br(x)), where
TΘn is the hitting functional associated to Θn, which characterizes the prob-
ability structure of the random set Θn.

According to [CV06a], if Θn admits a classical mean density λΘn , for all
A ∈ BRd ,

E[Hn(Θn ∩A)] =
∫

A

λΘn(x) dx.

In this case, we have that

lim
r→0

∫

A

TΘn(Br(x))
bd−nrd−n

dx =
∫

A

λΘn(x) dx. (1)
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If Θn is a stationary random closed set, then TΘn
(Br(x)) is independent of x

and the expected measure E[µΘn ] is motion invariant, hence it admits density
λΘn

(x) = L ∈ R+ for νd-a.e. x ∈ Rd. It follows that

lim
r→0

TΘn(Br(0))
bd−nrd−n

= L.

5 Mean densities of stochastic tessellations

Stochastic tessellations are a natural consequence of the random division of
space due to the establishment of a vessel network in vasculogenesis (see Figure
4). A random subdivision of space needs further information to be character-
ized. In this case the spatial region in Rd where the relevant process occurs
is randomly divided into cells (e.g. in a random Johnson-Mehl tessellation
[JM39, Mol92]; see also [Mol94]), and interfaces (n-facets, n = 0, 1, · · · , d)
at different Hausdorff dimensions (cells, faces, edges, vertices) appear (for a
planar process, see Figure 5).

As above, we may describe quantitatively the tessellation by means of
mean densities of the n-facets [Mol92].

We may call cell of a random tessellation any element of a family of
RACS’s partitioning the region E in such a way that any two distinct elements
of the family have empty intersection of their interiors.

Let us now introduce a rigorous concept of “interface” at different Haus-
dorff dimensions.

Definition 2. An n-facet at time t (0 ≤ n ≤ d) is the non-empty intersection
between m + 1 cells, with m = d− n.

Note that in the previous definition

• d = dimension of the space in which the tessellation takes place
• n = Hausdorff dimension of the interface under consideration
• m + 1 = number of cells that form such an interface
• for n = d a d-facet is simply a cell

(see also Figure 5).
For a system which evolves in time, we may consider the union of all n-

facets at time t, Ξn(t). For any Borel set B in Rd one can define the mean
n-facet content of B at time t as the measure

Md,n(t, B) = E [Hn(B ∩ Ξn(t))] (2)

where Hn is the n-dimensional Hausdorff measure.
Suppose that the process is such that Md,n admits a density µd,n(t, x)

with respect to νd, the standard d-dimensional Lebesgue measure on Rd, i. e.
for any Borel set B
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Md,n(t, B) =
∫

B

µd,n(t, x)dx, (3)

then the following definition is meaningful.

Definition 3. The function µd,n(t, x) defined by (3) is called local mean n-
facet density of the tessellation at time t.

In particular µd,d−1(t, x) is the surface density of the cells.

6 Statistical methods for fibre systems

We now describe some statistical methods which furnish a quantitative de-
scription of the mean geometric characteristics of random fibre systems, which,
at a suitable scale where the width of the fibres can be neglected (i.e. fibres
have Hausdorff dimension 1), may represent networks of vessels generated by
angiogenesis or vasculogenesis, or also other networks, for example of neu-
rons, lymph vessels, etc. Since in most cases such networks have a spatially
non homogeneous structure, statistical methods which may put into evidence
and compare quantitatively spatial inhomogeneities are a valid tool both for
medical doctors, for diagnosis and dose/response analysis and thus therapy,
and for mathematicians, to validate mathematical models by comparison of
simulated and real data. One of the first descriptors of the mean geometry
of a random fibre system is its mean length density, also called intensity, of
which here we will describe some estimators.

Let Γ be a random fibre system in Rd (see [BR04] or [CM08] for the
definition).

Note that

TΓ (Br(x)) = P(x ∈ Γ⊕r) = P(Γ ∩Br(x) 6= ∅)
where Γ⊕r is the parallel set of Γ having width r. We may rewrite Equality
(1), for Θn = Γ and n = 1, in the following ways

∫

A

λΓ (x)dx = lim
r→0

∫

A

TΓ (Br(x))
bd−1rd−1

dx (4)

= lim
r→0

∫

A

P(x ∈ Γ⊕r)
bd−1rd−1

dx (5)

= lim
r→0

∫

A

P(Γ ∩Br(x) 6= ∅)
bd−1rd−1

dx (6)

Equalities (4)-(6) provide a way to introduce estimators of λΓ (x) for a
random fibre, or fibre system Γ , provided that the limit and the integrals in
the right-hand terms of (4)-(6) can be exchanged, by estimating the quantities

TΓ (Br(x))
bd−1rd−1

=
P(x ∈ Γ⊕r)
bd−1rd−1

=
P(Γ ∩Br(x) 6= ∅)

bd−1rd−1
.
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We will call them histogram-like estimators, since the ”enlargement” Γ⊕r of
the set Γ via the Minkowski addition of a d-dimensional ball, which approx-
imates the fibre with a d-dimensional set, imitates the procedure used when
we estimate the p.d.f. of a real random variable from an i.i.d. sample using
moving histograms or kernels (see [Hard91, Pest98, Silv86] for details), where
we ”enlarge” the Dirac-delta’s measures concentrated on the sample points,
approximating them with classical and sufficiently regular functions.

According to the definitions introduced in the previous sections, the den-
sity of Γ is defined by

λΓ (x) = E[δΓ ](x) = lim
r→0

E(H1(Γ ∩Br(x)))
rdbd

.

In the following we will provide two estimators for the density of a random
fibre system Γ , based on the estimate of TΓ (Br(x)) or of P(Γ ∩Br(x) 6= ∅).

Basic assumptions for the estimation procedure

Suppose to have one or more images of the random fibre system Γ under
study and that the window W ⊆ Rd where Γ is observed can be divided in a
partition of subwindows {Ak}k=1,...,K such that

A1 Aj ∩Ak = ∅, ∀j 6= k

A2
⋃K

k=1 Ak = W
A3 in each window Ak limit and integral in (1) can be exchanged when Θn = Γ
A4 the density λΓ (x) can be locally well approximated by piecewise constant

functions, assuming different constant values in each window Ak.

Note that Assumption A3 is satisfied if in Ak the fibre system is (locally) sta-
tionary at a suitable mesoscale (see [ACV06] for a discussion of this problem).

6.1 Estimators of the density

Let us assume A1-A4; then for all x ∈ Ak, let us denote by λk the (constant)
density of the random fibre system in the subwindow Ak. We will obtain two
different estimators, based on the estimate of the quantities

1. P(x ∈ Γ⊕r ∩Ak)
2. TΓ (Br(x)),

respectively.
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Fattening fibres

Let us build first an estimator based on the estimate of P(x ∈ Γ⊕r ∩Ak). Let
us overlap to Ak a grid of points z1, . . . , zp ∈ Ak and build the set Γ⊕r ∩Ak.
Then a first estimator of λk is

λ̂1
k,r,p : =

1
2rp

p∑

i=1

1zi∈Γ⊕r∩Ak
(7)

where 1zi∈Γ⊕r∩Ak
are Bernoulli random variables assuming value one with

probability P(x ∈ Γ⊕r ∩Ak) which is independent of x ∈ Ak in our assump-
tions.

The asymptotic unbiasedness and other relevant statistical properties of
this estimator can be easily proven (see [CM09] for the proofs, and a discussion
on edge effects).

Fattening points

Let us now introduce an estimator based on the estimate of TΓ (Br(x)), x ∈ Ak.
Let us again consider a grid of points z1, . . . , zp overlapped on the window

Ak, such that Br(zi) ⊆ Ak for all i = 1, . . . , p (this assumption has the aim
of reducing the edge effects ). We then define

λ̂2
k,r,p : =

1
2rp

p∑

i=1

1Γ∩Br(zi)6=∅ (8)

where again 1Γ∩Br(zi)6=∅ is a Bernoulli random variable assuming value 1 with
probability P(Γ ∩Br(zi) 6= ∅) = TΓ (Br(zi)) = TΓ (Br(x)), ∀x ∈ Ak.

Again this is an asymptotically unbiased estimator (see [CM09]).
Both estimators can be computed by overlapping either a grid of determin-

istic and equally spaced points z1, . . . , zp, or a random grid of points uniformly
distributed on a window of observation. For a discussion of the advantages of
either methods see [CM09].

7 Application of the estimators to simulated angiogenic
processes

The estimators have then been applied to some (naive) simulations of real
fibre processes , where the simulation of the generation and branching of
vessels driven by a chemotactic field generated by a tumor is reported [CM08].
The tumor is located on the right hand side of the window and the vessels
start growing and branching from the left hand side of the window in the
right direction. The chemotactic field has a gradient in the x direction and
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Fig. 8. Estimate of the fibre density of an angiogenic process with a chemotactic
field having a gradient in the x direction. Middle figure: estimate with a deterministic
grid; bottom figure:estimate with a random grid of 2000 points. The estimators have
been corrected for bias. Dashed line= λ̂1

k,r,p, dotted-dashed line= λ̂2
k,r,p
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Fig. 9. Comparison between the two simulated angiogenic processes depicted in
the top line. Bottom left: comparisons of λ̂1

k,r,p for the two processes estimated

with a deterministic grid; bottom right: comparisons of λ̂1
k,r,p for the two processes

estimated with a random grid. In both cases the first process reveals a density lower
than the second, and this was really the case in the performed simulation.

influences both the speed of growth and the branching of the vessels. The
density has been estimated both with a deterministic and a random grid, by
dividing the observation window into 10 vertical stripes of the same width.
The estimators have been corrected for bias. The results are reported in Figure
8. In Figure 9 two simulations are reported where the intensities of branching
where different. The difference is not much evident by simply looking at the
patterns, but the estimate of the density reveals that the pattern on the left
has a lower density than the pattern on the right for any value of x, and this
was really the case, since the frequency of branching and speed of growth
was settled higher in the right hand pattern. This is thus an example where
quantitative analysis is essential for the characterization and differentiation
of the geometry.

In Figure 10 an analogous process but driven by a chemotactic field with a
spherical symmetry around a point-shaped tumor is reported. Because of the
observed symmetry, in this case the window of observation has been divided
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Fig. 10. Estimate of the fibre density of an angiogenic process driven by a chemo-
tactic field with a spherical symmetry. Top line: the fibre process and an estimate of
λ̂1

k,r,p using a random grid and dividing the window into 10 spherical shells centered

at the tumor; bottom: plot of λ̂1
k,r,p with respect to the radial coordinate, centered

at the tumor

into 10 spherical shells centered at the tumor location. Both the estimated
values in each subregion in a 2D visualization and the plot of the estimated
density with respect to the radial coordinate are reported. In this case, since
the subwindows are spherical shells, only estimator λ̂1

k,r,p has been computed,
since it is more easily computable for non-rectangular regions (see [CM09]).

In Figures 11, 12,13 a simulated angiogenic fibre system is shown and the
set of branching points (for simplicity only branching is simulated and not
anastomosis).

In Figure 14 estimator λ̂1
k,r,p has been computed on three images of a

vascular networks generated in allantoids (see [CM06] for a discussion of the
relevance of these studies in tumor treatment). Two of the three allantoids
have been treated with two different doses of an antiangiogenic substance,
which should inhibit the formation of vessels. The figure on the left refers to an
untreated control allantoid. Because of the spherical symmetry of the images,
also in this case the observation window has been divided into spherical shells
centered at the centroid of the allantoid. The results of the estimate reveal,
in a quantitative way, that the increase of the dose of the substance results in
a less widespread network and in a lower density of length of the vessels.
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