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Introduction This chapter is concerned with continuous time processes, which
are often modeled as a system of ordinary differential equations. These models as-
sume that the observed dynamics are driven exclusively by internal, deterministic
mechanisms. However, real biological systems will always be exposed to influ-
ences that are not completely understood or not feasible to model explicitly, and
therefore there is an increasing need to extend the deterministic models to models
that embrace more complex variations in the dynamics. A way of modeling these
elements is by including stochastic influences or noise. A natural extension of a de-
terministic differential equations model is a system of stochastic differential equa-
tions, where relevant parameters are modeled as suitable stochastic processes, or
stochastic processes are added to the driving system equations. This approach
assumes that the dynamics are partly driven by noise.

All biological dynamical systems evolve under stochastic forces, if we define stochas-
ticity as the parts of the dynamics that we either cannot predict or understand or
that we choose not to include in the explicit modeling. To be realistic, models of bi-
ological systems should include random influences, since they are concerned with
subsystems of the real world that cannot be sufficiently isolated from effects exter-
nal to the model. The physiological justification to include erratic behaviors in a
model can be found in the many factors that cannot be controlled, like hormonal os-
cillations, blood pressure variations, respiration, variable neural control of muscle
activity, enzymatic processes, energy requirements, the cellular metabolism, sym-
pathetic nerve activity, or individual characteristics like body mass index, genes,
smoking, stress impacts, etc. Also external influences, like small differences in the
experimental procedure, temperature, differences in preparation and administra-
tion of drugs, if this is included in the experiment, or maybe the experiments are
conducted by different experimentalists that inevitably will exhibit small differ-
ences in procedures within the protocols. Different sources of errors will require
different modeling of the noise, and these factors should be considered as carefully
as the modeling of the deterministic part, in order to make the model predictions
and parameter values possible to interpret.

It is therefore essential to understand and investigate the influence of noise in
the dynamics. In many cases the noise simply blurs the underlying dynamics
without qualitatively affecting it, as is the case with measurement noise or in
many linear systems. However, in nonlinear dynamical systems with system noise,
the noise will often drastically change the corresponding deterministic dynamics.
In general, stochastic effects influence the dynamics, and may enhance, diminish
or even completely change the dynamic behavior of the system.
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The Wiener process (or Brownian Motion) The most important stochastic
process in continuous time is the Wiener process, also called Brownian Motion. It
is used as a building block in more elaborate models. In 1828 the Scottish botanist
Robert Brown observed that pollen grains suspended in water moved in an ap-
parently random way, changing direction continuously. This was later explained
by the pollen grains being bombarded by water molecules, and Brown only con-
tributed to the theory with his name. The precise mathematical formulation to
explain this phenomenon was given by Norbert Wiener in 1923.

The Wiener process can be seen as the limit of a random walk when the time steps
and the jump sizes go to 0 in a suitable way, and can formally be defined as follows.

Definition 1 (Wiener process) A stochastic process {W (t)}t≥0 is called a Wiener
process or a Brownian motion if

i) W (0) = 0

ii) {W (t)}t≥0 has independent increments, i.e.

Wt1 ,Wt2 −Wt1 , · · · ,Wtk −Wtk−1

are independent random variables for all 0 ≤ t1, < t2 < · · · < tk.

iii) W (t+ s)−W (s) ∼ N(0, t) for all t > 0.

Here, N(µ, σ2) denotes the normal distribution with mean µ and variance σ2. Thus,
the Wiener process is a Gaussian process: a stochastic process X is called a Gaus-
sian process if for any finite set of indices t1, . . . , tk the vector of random variables
(X(t1), . . . , X(tk)) is following a k-dimensional normal distribution. In fact, it can
be shown that any continuous time stochastic process with independent incre-
ments and finite second moments: E(X2(t)) < ∞ for all t, is a Gaussian process
provided that X(t0) is Gaussian for some t0.

t

W(t)

Figure 1: A Wiener sample path
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The Wiener process is continuous with mean zero and variance proportional to the
elapsed time: E(W (t)) = 0 and Var(W (t)) = t. If X(t) is a stationary stochastic
process, then X(t) has the same distribution as X(t + h) for all h > 0. Thus,
the Wiener process cannot be stationary since the variance increases with t. The
autocovariance function is given by Cov(Wt,Ws) = min(s, t).

The sample paths of a Wiener process behave “wildly” in that they are nowhere
differentiable. To see what that means define the total variation of a real-valued
function f on an interval [a, b] ⊂ R by the quantity

V b
a (f) = sup

n∑
k=1

|f(tk)− f(tk−1)|

where the supremum is taken over all finite partitions a ≤ t0 < · · · < tn ≤ b of [a, b].
When V b

a (f) <∞ we say that f is of bounded variation on [a, b]. Functions that be-
have sufficiently “nice” are of bounded variation, if for example f is differentiable
it is of bounded variation. It turns out that the Wiener process is everywhere of
unbounded variation. This happens because the increments W (t+ ∆t)−W (t) is on
the order of

√
∆t instead of ∆t since the variance is ∆t. Heuristically we write

V b
a (W ) = sup

n∑
k=1

|W (tk)−W (tk−1)|

≥ lim
n→∞

n∑
k=1

∣∣∣∣W (
a+

k

n
(b− a)

)
−W

(
a+

(k − 1)

n
(b− a)

)∣∣∣∣
≈ lim

n→∞

n∑
k=1

√
1

n
(b− a) = lim

n→∞

√
n(b− a) = ∞

for any interval [a, b]. Trying to differentiate we see how this affects the limit

lim
∆t→0

|W (t+ ∆t)−W (t)|
∆t

≈ lim
∆t→0

|
√

∆t|
∆t

= ∞.

Now define the quadratic variation of a real-valued function f on [a, b] ⊂ R by

[f ]ba = sup
n∑
k=0

(f(tk)− f(tk−1))2

where the supremum is taken as before. For functions of bounded variation the
quadratic variation is always 0, and thus, if [f ]ba > 0 then V b

a (f) =∞. The quadratic
variation of a Wiener process over an interval [s, t] equals t− s, and in the limit we
therefore expect

lim
∆t→0

(W (t+ ∆t)−W (t))2 ≈ ∆t. (1)
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Stochastic differential equations Assume the ordinary differential equation

dx

dt
= a(x, t) (2)

describes a one-dimensional dynamical system. Assume that a(·) fulfills conditions
such that a unique solution exists, thus x(t) = x(t;x0, t0) is a solution satisfying the
initial condition x(t0) = x0. Given the initial condition, we know how the system
behaves at all times t, even if we cannot find a solution analytically. We can always
solve it numerically up to any desired precision. In many biological systems this
is not realistic, and a more realistic model can be obtained if we allow for some
randomness in the description.

A natural extension of a deterministic ordinary differential equations model is
given by a stochastic differential equations model, where relevant parameters are
randomized or modeled as random processes of some suitable form, or simply by
adding a noise term to the driving equations of the system. This approach assumes
that some degree of noise is present in the dynamics of the process. Here we will
use the Wiener process. It leads to a mixed system with both a deterministic and
a stochastic part in the following way:

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt (3)

where Xt = X(t) is a stochastic process, not a deterministic function like in (2).
This is indicated by the capital letter. Here Wt = W (t) is a Wiener process and
since it is nowhere differentiable, we need to define what the differential means.
It turns out that it is very useful to write dWt = ξtdt, where ξt is a white noise
process, defined as being normally distributed for any fixed t and uncorrelated:
E(ξtξs) = 0 if s 6= t. Strictly speaking, the white noise process ξt does not exist as
a conventional function of t, but could be interpreted as the generalized derivative
of a Wiener process.

We call a process given by an equation of the form (3) for an Ito process. The func-
tions µ(·) and σ(·) can be nonlinear, where µ(·) is the drift part or the determinis-
tic component, and σ(·) is the diffusion part or the stochastic component (system
noise), that may depend on the state of the system, Xt. If µ(·) and σ(·) do not de-
pend on t the process is called time-homogeneous. Eq. (3) should be interpreted in
the following way:

Xt = Xt0 +

∫ t

t0

µ(Xs, s) ds+

∫ t

t0

σ(Xs, s) dWs (4)

where Xt0 is a random variable independent of the Wiener process. It could simply
be a constant. The first integral on the right hand side can be interpreted as an
ordinary integral, but what is the second integral? The Wiener process is nowhere
differentiable, so how do we give meaning to this differential?
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Let us try the usual tricks from ordinary calculus, where we define the integral for
a simple class of functions, and then extend by some approximation procedure to
a larger class of functions. We want to define∫ t

t0

f(s) dWs. (5)

If f(t) ≡ σ is constant we would expect the integral (5) to equal σ(W (t) −W (t0)).
Note that this is a random variable with expectation 0 since the increments of a
Wiener process has expectation 0. Now assume that f(t) is a non-random step
function of the form f(s) = σj on tj ≤ s < tj+1 for j = 1, 2, . . . , n where t0 = t1 < t2 <
· · · < tn+1 = t. Then we define∫ t

t0

f(s) dWs =
n∑
j=1

σj (W (tj+1)−W (tj)) .

It is natural to approximate a given function f(t) by a step function. Define a
partition Πn of the interval [t0, t] by t0 = t1 < t2 < · · · < tn+1 = t where |Πn| =
max{|tj+1 − tj| : j = 1, . . . , n} is the norm of the partition, and approximate

f(t) ≈ f(t∗j) for tj ≤ t < tj+1

where the point t∗j belongs to the interval [tj, tj+1]. Then we define∫ t

t0

f(s) dWs = lim
|Πn|→0

n∑
j=1

f(t∗j) (W (tj+1)−W (tj)) .

When f(t) is stochastic it turns out that - unlike ordinary integrals - it makes a
difference how t∗j is chosen! To see this consider f(t) = Wt and define two approx-
imations: t∗j = tj, the left end point, and t∗j = tj+1, the right end point. Taking
expectations we see that the two choices yield different results:

E

[
n∑
j=1

W (tj) (W (tj+1)−W (tj))

]
=

n∑
j=1

E [W (tj) (W (tj+1)−W (tj))]

=
n∑
j=1

E [W (tj)] E [W (tj+1)−W (tj)] = 0

because the Wiener process has independent increments with mean 0. On the
other hand,

E

[
n∑
j=1

W (tj+1) (W (tj+1)−W (tj))

]
=

n∑
j=1

E
[
(W (tj+1)−W (tj))

2]
=

n∑
j=1

(tj+1 − tj) = t− t0
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where we have subtracted E
[∑n

j=1 W (tj) (W (tj+1)−W (tj))
]

= 0 and rearranged in
the first equality sign, and the second equality sign is the variance of the Wiener
process. Two useful and common choices are the following:

• The Ito integral: t∗j = tj, the left end point.

• The Stratonovich integral: t∗j = (tj + tj+1)/2, the mid point.

There are arguments for using either one or the other, most of them rather tech-
nical and we will not enter in this discussion here. Fortunately, though, the differ-
ence between the two is a deterministic quantity and it is possible to calculate one
integral from the other. Here we only use the Ito integral.

Some important examples of Ito processes are the following.

Wiener process with drift Imaging a particle suspended in water which is sub-
ject to the bombardment of water molecules. The temperature of the water will
influence the force of the bombardment, and thus we need a parameter σ to char-
acterize this. Moreover, there is a water current which drives the particle in a
certain direction, and we will assume a parameter µ to characterize the drift. To
describe this the Wiener process can be generalized to the process

dXt = µ dt+ σ dWt

which has solution

Xt = µ t+ σWt

and is thus normally distributed with mean µt and variance σ2t, as follows from
the properties of the standard Wiener process.

Geometric Brownian motion Imaging a drug is supplied as a bolus to the blood
stream and that the average metabolic process of the drug can be described by an
exponential decay through the deterministic equation x′ = −ax, where x is the
concentration of the drug in plasma and a is the decay rate. Assume now that
the decay rate fluctuates randomly due to the complex working of the enzymatic
machinery involved in the breakdown of the drug. That could be described by
letting a vary randomly as a = µ+ σξt, where ξt is a Gaussian white noise process.
Then ξtdt can be written as the differential of a Wiener process, dWt. This leads to
the model

dXt = µXt dt+ σXt dWt.

It is shown below that the explicit solution is

Xt = X0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
.
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The process only takes positive values and Xt follows a log-normal distribution
with parameters (µ− σ2/2)t and σ2t.

Ornstein-Uhlenbeck process Imaging a process subject to a restoring force, i.e.
the process is attracted to some constant level but is continuously perturbed by
noise. An example is given by the membrane potential of a neuron that is con-
stantly being perturbed by electrical impulses from the surrounding network, and
at the same time is attracted to an equilibrium value depending on the resting
potentials for different ions present at different concentrations inside the cell and
in the interstitium. This leads to the model

dXt = −
(
Xt − α
τ

)
dt+ σ dWt. (6)

Here τ has units time, and is the typical time constant of the system. The au-
tocorrelation is given by corr(Xt, Xt+s) = e−s/τ , and thus the autocorrelation has
decreased with a factor of 1/e after τ units of time. It has the explicit solution

Xt = X0e
−t/τ + α(1− e−t/τ ) + e−t/τ

∫ t

0

es/τσdWs (7)

and Xt given X0 is normally distributed with mean E(Xt) = X0e
−t/τ + α(1 − e−t/τ )

and variance V (Xt) = σ2τ(1− e−2t/τ )/2. If X0 is normally distributed with mean α
and variance σ2τ/2, then so is Xt for all t, i.e. Xt is stationary.

When the diffusion term does not depend on the state variable Xt as in the Wiener
process with drift and the Ornstein-Uhlenbeck process, we say that it has additive
noise. In this case the Ito and the Stratonovich integrals yield the same process,
so it does not matter which calculus we choose. In the case of Geometric Brownian
motion we say that it has multiplicative noise.

t

W(t)

t

X(t)

t

X(t)

Figure 2: Sample paths from a Wiener process with drift (left), a Geometric Brow-
nian motion (middle) and an Ornstein-Uhlenbeck process (right). Note how the
amplitude of the noise does not change over time for the Wiener and the Ornstein-
Uhlenbeck process, whereas for Geometric Brownian motion the amplitude of the
noise is proportional to the state variable.
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Existence and uniqueness To ensure the existence of a solution to (3) for 0 ≤
t ≤ T where T is fixed, the following is sufficient:

|µ(t, x)|+ |σ(t, x)| ≤ C(1 + |x|)

for some constant C. This ensures that Xt does not explode, i.e that |Xt| does not
tend to∞ in finite time. To ensure uniqueness of a solution the Lipschitz condition
is sufficient:

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|

for some constant D. Note that only sufficient conditions are stated, and in many
biological applications these are too strict, and weaker conditions can be found.
We will not treat these here, though. Note also that these conditions are fulfilled
for the three processes described above.

Itos formula Stochastic differentials do not obey the ordinary chain rule as we
know it from classical calculus. An additional term appears because (dWt)

2 be-
haves like dt, see (1). We have

Theorem 2 (Itos formula) Let Xt be an Ito process given by

dXt = µ(t,Xt)dt+ σ(t,Xt) dWt

and let f(t, x) be a twice continuously differentiable function in x and once contin-
uously differentiable function in t. Then

dYt = f(t,Xt)

is also an Ito process, and

dYt =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2
σ2(t,Xt)

∂2f

∂x2
(t,Xt)dt.

Note that the first two terms on the right hand side correspond to the chain rule
we know from classical calculus, but an extra term appears in stochastic calculus
because the Wiener process is of unbounded variation, and thus the quadratic
variation comes into play.

Example Let us calculate the integral
∫ t

0
WsdWs. From classical calculus we expect

a term like 1
2
W 2
t in the solution. Thus, we choose f(t, x) = 1

2
x2 and Xt = Wt and

apply Itos formula to

Yt = f(t,Wt) =
1

2
W 2
t .
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We obtain

dYt =
∂f

∂t
(t,Wt)dt+

∂f

∂x
(t,Wt)dWt +

1

2
σ2(t,Wt)

∂2f

∂x2
(t,Wt)dt = 0 +WtdWt +

1

2
dt

because σ2(t,Wt) = 1. Hence

Yt =
1

2
W 2
t =

∫ t

0

WsdWs +
1

2

∫ t

0

ds =

∫ t

0

WsdWs +
1

2
t

and finally ∫ t

0

WsdWs =
1

2
W 2
t −

1

2
t.

Example Let us find the solution Xt to the Geometric Brownian motion

dXt = µXt dt+ σXt dWt.

Rewrite the equation as
dXt

Xt

= µ dt+ σ dWt.

Thus, we have ∫ t

0

dXs

Xs

= µ t+ σWt (8)

which suggests to apply Itos formula on f(t, x) = log x. We obtain

dYt = d(logXt) =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2
σ2(t,Xt)

∂2f

∂x2
(t,Xt)dt

= 0 +
1

Xt

dXt +
1

2
σ2X2

t

(
− 1

X2
t

)
dt =

dXt

Xt

− 1

2
σ2dt

and thus
dXt

Xt

= d(logXt) +
1

2
σ2dt. (9)

Integrating (9) and using (8) we finally obtain

log
Xt

X0

=

∫ t

0

dXs

Xs

− 1

2
σ2t = µ t+ σWt −

1

2
σ2t

and so

Xt = X0 exp

{(
µ− 1

2
σ2

)
t+ σWt

}
.

Note that it is simply the exponential of a Wiener process with drift.

The solution (7) of the Ornstein-Uhlenbeck process can be found by multiplying
both sides of (6) with e−t/τ and then apply Itos formula to e−t/τXt. We will not do
that here.
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Monte Carlo simulations When no explicit solution is available we can ap-
proximate different characteristics of the process by simulation, such as sample
paths, moments, qualitative behavior etc. Usually such simulation methods are
based on discrete approximations of the continuous solution to a stochastic differ-
ential equation. Different schemes are available depending on how good we want
the approximation to be, which comes at a price of computer time. Assume we
want to approximate a solution to (3) in the time interval [0, T ]. Consider the time
discretization

0 = t0 < t1 < · · · < tj < · · · < tN = T

and denote the time steps by ∆j = tj+1 − tj and the increments of the Wiener
process by ∆Wj = Wtj+1

−Wtj . Then ∆Wj ∼ N(0,∆j), which we can use to construct
approximations by drawing normally distributed numbers from a random number
generator. For simplicity assume that the process is time-homogenous.

The Euler-Maruyama scheme The simplest scheme is the stochastic analogue
of the deterministic Euler scheme. Approximate the process Xt at the discrete
time-points tj, 1 ≤ j ≤ N by the recursion

Ytj+1
= Ytj + µ(Ytj )∆j + σ(Ytj )∆Wj ; Yt0 = x0

where ∆Wj =
√

∆j · Zj, with Zj being standard normal variables with mean 0
and variance 1 for all j. This approximating procedure assumes that the drift and
diffusion functions are constant between time steps, so obviously the approxima-
tion improves for smaller time steps. To evaluate the convergence things are more
complicated for stochastic processes, and we operate with two criteria of optimal-
ity: the strong and the weak orders of convergence.

Consider the expectation of the absolute error at the final time instant T of the
Euler-Maruyama scheme. It can be shown that there exist constants K > 0 and
δ0 > 0 such that

E(|XT − YtN |) ≤ Kδ0.5

for any time discretization with maximum step size δ ∈ (0, δ0). We say that the
approximating process Y converges in the strong sense with order 0.5. This is sim-
ilar to how approximations are evaluated in deterministic systems, only here we
take expectations, since XT and YtN are random variables. Compare with the Eu-
ler scheme for an ordinary differential equation which has order of convergence 1.
Sometimes we do not need a close pathwise approximation, but only some function
of the value at a given final time T (e.g. E(XT ), E(X2

T ) or generally E(g(XT ))). In
this case we have that there exist constants K > 0 and δ0 > 0 such that for any
polynomial g

|E (g(XT )− E(g(YtN )))| ≤ Kδ

for any time discretization with maximum step size δ ∈ (0, δ0). We say that the
approximating process Y converges in the weak sense with order 1.
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The Milstein scheme To improve the accuracy of the approximation we add a
second-order term that appears from Itos formula. Approximate Xt by

Ytj+1
= Ytj + µ(Ytj )∆j + σ(Ytj )∆Wj︸ ︷︷ ︸

Euler-Maruyama

+
1

2
σ(Ytj )σ

′(Ytj ){(∆Wj)
2 −∆j}

︸ ︷︷ ︸
Milstein

where the prime ′ denotes derivative. It is not obvious exactly how this term
appears, but can be derived through stochastic Taylor expansions. The Milstein
scheme converges in the strong sense with order 1, and could thus be regarded as
the proper generalization of the deterministic Euler-scheme.

If σ(Xt) does not depend on Xt the Euler-Maruyama and the Milstein scheme co-
incide.
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