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Structure

1. Introduction and the basics of WinBUGS

Introduction to WinBUGS

Familiarisation with the interface

Winbugs language: models, priors, initial values

Running Winbugs and the format of the results

Chain convergence and diagnostics

Running a simple BUGS mode

2. Fitting models to kinetic data
* Running a pharmacokinetic model
* Using scripts and interfacing WinBugs from other programmes

* Fitting ODE models to data



Structure

3. Hierarchical models
* Fitting population models to kinetic data
* Descriptive covariates

* Multi-level hierarchical models
4. Informative Priors
* Defining informative priors from previous WinBUGS runs

* Defining informative priors from literature

6. Model comparison



WinBUGS

BUGS: Bayesian inference Using Gibbs Sampling
A computer programme to perform Bayesian inference of parametric models using
Markov Chain Monte Carlo (MCMC) method.

Different versions: WinBUGS, OpenBUGS (same but open source),
Unix command line based versions.
Can be run on Linux and Mac through WINE

Also interfaces from Matlab, S-Plus, R and other

Winbugs developed on a platform called Blackbox (Omeron, Switzerland) using a
language called Component Pascal which is a non-ANSI Pascal dialect.



MCMC

Markov Chain Monte Carlo method creates random samples such that after enough
iterations the chain converges to a stationary distribution which is the joint
distribution of all stochastic parameters.

(Markov chain is a series of states with memory 1, i.e. each state depends only on the
previous step)

Gibbs sampling: The chain is updated by sampling, for each variable, from its full
conditional distribution where all other variables are considered known and are given
the values of the previous state of the chain.

Metropolis — Hastings: Used when the distribution is not of known form like in
nonlinear systems.

For each variable a new value is generated from a proposal distribution which is then
compared with the old value. The new value is accepted with a probability so that the
draws are actually simulating from the posterior distribution. If a value is rejected
then the variable retains its old value.



WinBUGS interface
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Running WinBUGS

Fit parametric models to data and obtain parameter estimates
Parameter estimates typically are point estimates and uncertainty

In WinBUGS the output is a chain of samples from a nonparametric
distribution representing the posterior distribution

With descriptive statistics on the chains, meaningful output is
calculated

Also being Bayesian one has to set priors in the form of parametric
distributions



Running WinBUGS
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WinBUGS Language

Used to define the model and the priors.
Not really a full featured programming language

Can do:
* Assignments of variables. So called logical nodes:a <- b

» Definition of stochastic variables (nodes): a ~ dnorm (mu, tau)
e For-loops: for( i in 1:N ) { <commands> }

* Evaluate algebraic formulas (but big ones are slow, these need to be hardcoded
and be called as functions):a <- b + (exp(d) - 1)

* No “if” statement but a “step” function can potentially serve the “if”
functionality for certain cases. e.g. to define branched expressions

* Supports indices and tables: x[i, j, k] or y[1:5, 1:5] or
z [] means all valuesof zand z[,3] meansthe 3 column

* A definition of the data as a stochastic node is always present



Data

Data in WinBUGS are inserted as multidimensional matrices or vectors in 2 formats

Rectangular array

al[] b[]
1 1.2
2 1.6
3 0.12
END

S-Plus format

list(

a=c(l, 2, 3),

b=c¢c(l.2, 1.6, 0.12),

m = structure(.Data=c(1,2,3,4,5,6,NA)8,9),.Dim=c (3, 3))
)



Priors

Initial belief for the values of the parameters

It’s in the form of distributions with expected values and dispersion
accounting for uncertainty

Always there, even when non-informative

Defined in the model and are parametric distributions

Usual such distribution are

a~dnorm(prior.mean, prior.prec)
a[l:N]~dmnorm(prior.mean|[], prior.prec|,])
b~dgamma (alpha, beta)

b[1:N, 1:N]~dwish(sigma[,], deqg]

f=dunif (init, fin)



Non-informative priors

When no prior information is available we need to use non-informative
priors

Theoretically the estimation problem then takes into account only the
likelihood from the data and becomes equivalent to a frequentist approach

Flat distributions or as flat as possible, with correct properties

Examples
a~dnorm(1l, 0.000001) small precision -> high variance

b~dgamma (0.001, 0.001) small equal values -> mean=a/b=1,
variance=a/b? = 1000, can use uniform instead.

b[1:N, 1:N]~dwish(sigma[,], N] deg=size, least informative
Wishart but not completely non-informative, we use it for variance

parameters because it is positive definite.

f=dunif (0,100)



Initial values

Initial values for all stochastic nodes are needed

Random ones can be generated which is OK when informative priors exist

With non-informative priors, reasonable initial values are necessary to

initialise the chains

They are defined as a list in S-Plus form, exactly as the data

We can run more than one chains by having more sets of initial values

& Specification Tool [ X

check model

num of chains @/

] for chain E

Change this before
pressing compile



Running WinBUGS

Having defined the model, priors, data and inits, we define the parameters
to be monitored.

Not all parameters need to be monitored, only the ones we are interested in
We start the chain (or chains) for a predefined number of iterations

After it’s done we look at the results
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The results in WinBUGS

e Results come in the form of Monte Carlo samples which are hopefully
drown from the correct posterior distribution.

* In principle we have to run the chains for long enough for this to
happen

* There is no automatic way for termination of WinBUGS updating

* Chains must:

Converge after some initial burn-in iterations

Mix enough and sample representatively from the posterior distribution
* Problem is that often chains mix slowly and have to be run for longer

* Best way to tell is to look at the chains

e But formal methods exist to check



The results in WinBUGS

Initial burn in part has to be discarded
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The results in WinBUGS

e Sample Monitor Tool

MCMC chains suffer from memory effects e [ Floom- m ,,.B,W,t...as

which are expressed by the autocorrelation
plot and account for the patterns. - -

thin

clear history | density |

stats | coda I quanlllesl bar dlagl auto corl

To address that you have to run for longer

Also thin the chains
Autocorrelation plot
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Chain convergence

Convergence to a marginal distribution
Important to converge and also to sample representatively from posterior

Most usual way to check is the visual inspection. Look for “fat hairy
caterpillars” in the history plot

Formal ways exist. The software CODA (for s-plus and R) implements
several criteria

Brooks-Gelman-Rubin (BGR) is available from within WinBUGS and is
based on comparing at least 2 chains
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BGR diagnostic

*At least 2 chains with differing starting values

*Green: width of 80% intervals of pooled
chains. Should be stable

*Blue: Average width of 80% intervals for chains
Should be stable

*Red (bgr): ratio of pooled/within. Should be 1

*Double click on plot and CTRL+right click gives
statistics
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. . . = Sample Monitor Tool E3
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* Look at descriptive statistics of the chains that summarise the chains in
meaningful means, SD, percentiles

¥ Node statistics

node mean sd MC error 2.5% median 97.5% start sample
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heta 0.9276 05397 0003232 pA89 0.5252 2.249 101001 100000 LI

* Export the chains using CODA (Coda is an S-plus and R programme for Winbugs):
A window including the chains of all the parameters appended
An index window pointing at the start and end lines for each parameter

CODA for chain 1 -
X jr—|
11472 (CODA index
2 007427 :

3 0366 :salpha 1 100000 ﬂ
4 04125 beta 100001 200000

5 05708

6 09221




Example: Fitting a normal distribution to data
(Switch to software)

Model

model{

for(i in 1:20){
data[i]~dnorm(mu,tau)
}

mu~dnorm(0,0.0000001)

tau~dgamma(0.001,0.001)

sigma <- 1/sqgrt(tau)
}

Data

list(

data = ¢(
14.29089337035724,16.83837707588466,15.19079787199498,13.82169101112563,15.23774011656273,
15.71770580130648,14.25348152327621,15.70644333836343,15.18221445171283,16.25817930399878,
14.07391242014187,15.09557349555977,15.80198510262376,14.53453436023399,15.88492175016683,
14.93469457573189,18.30022332988798,14.37724022490213,14.86854407159346,14.79744370388398)

)

Initial values

list(
mu=0,
tau=1

)



Time series
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Simulate the data

Model

model{
for(iin 1:20){

data[i]~dnorm(mu,tau)

}
mu~dnorm(15,100000000)
tau~dgamma(100000,100000)

informative
priors

}

Data (empty)

list(
data=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA)

)



Summary -intro

WinBUGS language to define the model
Priors and initial values for the chains also needed

Non-informative priors when no information is available give results
close to a frequentist approach

Tricky bit is how tell you ‘ve run the chains for long enough. No formal
termination criterion

Chains must converge, and after converging, mix enough

Some criteria for that exist (CODA) but safer is to rely on experience and
visual inspection of chains.

No Auto-Correlation, and “Hairy fat caterpillars” is what you want



Example: Fitting a simple pharmacokinetic model to data

Parameters

CL: clearance (3.75 L/h)

V: volume of distribution (25 L)

Ka: absorption first order rate constant (2 h?)

Dose - k CL
= . ——t) - —k,t

Absorption, ka

cong, = f, *exp(e) €.~ N(0,0)
003 :
% 003+ °0®
O .
C oot o
2 o o
Elimination, ke=CL/V © 00 .
)
O
§ 0.015 f )
S oo} ° 5
) c o
0.005 L . L L L
0 2 4 6 8 10 12

Time (hours)



model{

for(i in 1:n){
concli]~”dnorm(logmodelli],tau)
logmodel[i]<-log(dose*ka/(V*ka-CL)*(exp(-CL/V*times[i])-exp(-ka*times][i])))
}

CL<-exp(mu[1]) Parameters Slow, should
V<-exp(mul2]) also logged Local identifiability: hardwire:

ka<-exp(mu[3])+CL/V parameterise as foflsggk<itfr:§§ns
mu[3]=ka-ke, i.e. ka > ke

Correlations between
parameters

mu[1:3] ~dmnorm(prior.mean(],prior.prec[,])

tau~dgamma(0.001,0.001)
sigma<-1/sqrt(tau)
}

list(

n=15,

dose=1,
times=c(0.25,0.5,1,1.5,2,3,4,5,6,7,8,9,10,11,12),

conc=c(-4.25492,-3.79575,-3.43383,-3.45049,-3.43203,-3.55484,-3.70655, Logged
-3.82849,-4.00805,-4.13308,-4.40292,-4.4919,-4.64878,-4.87452,-4.92813), data

prior.mean=c(0,0,0),
prior.prec=structure(.Data=c(1.0E-6,0,0,0,1.0E-6,0,0,0,1.0E-6),.Dim=c(3,3)))
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Results: run for another 100k iterations and keep 1:10, (took 23 secs to run)
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Results

A plot of the model with the data can be obtained from the Comparison Tool
found in the Inference menu

node |logmodel beg [10000  end |1000000
other Iconc box plot I caterpillar I
axis |times i model fit I scatterplot I

....................................

model fit: logmodel
-3.0F
-35 o ;t’:‘.-a”"'-‘?—.g; -
e,
40F ; -, -y
| g
-4.5 ‘!v.,,ﬁ__?_ X
50k ey
551
I I I I
0.0 50 100 15.0

Median (-), 2.5% and 97.5% percentiles (--) are plotted

Have to make sure “logmodel” is monitored



Parameter space

* Physiological parameters usually are positive

* A reasonable assumption is that they follow lognormal distributions
* To implement that we work on the log scale for the parameters
log-parameter ~ N(mean, var)

and exponentiate parameter <- exp(log-parameter) to feed into the model

* Informative priors may be easily defined. Any non-infinite (effectively) variance
means informative prior.

* Non-informative prior: infinite variance i.e. zero precision

* Informative priors directly influence the result according to Bayes’ theorem
i.e. posterior = prior * likelihood, (normalised to integrate to 1)



Parameter space

* Parameters are considered to follow multivariate distributions. i.e. are
correlated.

* Basically means that the chains should be treated in pairs, triplets and so on

prob density

value

* The stats option in WinBUGS does not report covariance terms but they exist.

* To calculate them, should export the chains and perform multivariate
descriptive statistics externally



Residual error: model

Least Squares: weights: 1 or 1/y?

Likelihood methods: a random effect is considered for error with specific distribution

Usual types of residual error:

Additive error y,=f +€ g~ N(0,0) straightforward
Proportional error y, = f. (1+€) €.~ N(0,0) NA

Exponential error y; = f. *exp(g;) €~ N(0,0) Log model and data.
(similar to proportional) Makes it additive on

the log scale

Combined error: y;=f (1+e,) + &, &~ N(0,2) feasible

Also other types...



Residual error: prior

As in all variance terms of normally distributed variables residual error can
be considered to be inverse-Gamma distributed

Precision (tau=1/var=1/SD?) is Gamma distributed

Gamma distribution Gamma(a,b) has mean=a/b and var=a/b?
Appropriate informative priors may be defined based on that
Non-informative priors:

tau ~ dgamma (0.001, 0.001)

sigma <- 1/sqrt(tau)

Concerns have been raise that this may not be entirely non-informative
Alternatively uniform on sigma (recommended by WinBUGS authors):
sigma ~ dunif (0, 100)

tau <- 1/ (sigma*sigma)

But also possible to use uniform on variance or tau



Structural identifiability

*A parameter estimation problem should ideally be globally identifiable
*Each profile is produced by a unique set of parameter values

*Some systems are only locally identifiable due to structural symmetries
meaning that each time a profile is produced by 2 or more different sets of
parameter values

*In a Levenberg — Marquardt algorithm (local optimiser) different solutions
are obtained for different initial values

*But in MCMC the entire parameter space within the prior is explored,
therefore the system should be made globally identifiable by setting
constraints or appropriate parameterisation

*In our example parameterising as mu(3)=ka-ke > 0 (log-normal) makes the
problem globally identifiable. But care must be taken as ka<ke is also
physically plausible



Using scripts

Clicking buttons is not everybody’s favorite way of using software and is
not practical when automation is needed.

WinBUGS supports simple scripts which can execute the needed tasks as
a sequence of text commands

display('log')

check ('lipari/ex2model. txt')
data('lipari/ex2data.txt')
Compi le (1) File Tools Edit Attributes Info | Model Inference Options Info
inits (1, 'lipari/ex2inits.txt') Skl
gen.inits () pdate.

se t ( CL ) Save State

set (V) T

set (ka)

set (sigma)

update (100000)

stats (*)

history (¥*)

density (*)

autoC (¥*)

save ('lipari/ex2out')
CODA (*, codaout)

= BlackBox

Monitor Met



Interfacing with other software

Several packages have been developed making possible to
invoke a WinBUGS run and retrieve the results through other

softwares
Such as:
Package |Platform _|Features
R2Winbugs R
MATBUGS MATLAB
BugsXLA Excel No WinBUGS knowledge required
PyBUGS Python Computer cluster
bugsParallel R Computer cluster
And others ...

They all work by building a script file, running WinBUGS as a shell
command and then importing a CODA file with the results



Hardwiring functions in WinBUGS

Winbugs handles complex algebraic expressions.

* However anything but the very basic of models, is very slow

It is better to hardwire and pre-compile even relatively simple models

Example of PK Winbugs model
logmodel[i]<-log(dose*ka/ (V*ka-CL) * (exp (-CL/V*times[i]) -~exp (-ka*times[i])))

Can be written as

logmodel[i]<-PKlabslm(mu[] ,dose,times[i])

Where pr1absim() is a compiled function used much like 10g() or exp ()

* Improvement of nearly 6 times in this example
(4 secs vs 23 secs for 100k interations)

* This is done in Blackbox software which is the platform in which WinBUGS
itself is developed and written in Component Pascal



Hardwiring functions in WinBUGS

Install Blackbox, download it first from http://www.oberon.ch/blackbox.html

Copy WInBUGS in the Blackbox directory and run Blackbox

This runs WinBUGS from within Blackbox

Download and install WBDev package from WinBUGS development site

Use templates and instructions provided to write you own functions in
Component Pascal. You don’t really need to have Pascal knowledge

Compile function by pressing K

* Add a line for the definition of the function in the grammar file

([root]\WBDeVv\Rsrc\Grammar.odc):
s <- "PKlabslm" (v, s, s) "WBDevPKlabslm.Install”

* Function ready to use in WinBUGS



(*1*) MODULE WBDevPKlabslm;

TupoRT Component Pascal example

WBDevScalar,
(*2%) Math;
TYPE
Function = POINTER TO RECORD (WBDevScalar.Node) END;
Factory = POINTER TO RECORD (WBDevScalar.Factory) END;

VAR
fact-: WBDevScalar.Factory;

(*3*) PROCEDURE (func: Function) DeclareArgTypes (OUT args: ARRAY OF CHAR) ;
(*4%) BEGIN
(*5%) args := "vss";
(*6%) END DeclareArgTypes;
(*7*) PROCEDURE (func: Function) Evaluate (OUT value: REAL);
(*8%) CONST
(*9%*) parameters = 0; dose = 1; time = 2;
(*10%*) VAR
(*11%*) F,ke,cl,V,ka,D,t,c: REAL;

b aramerters cl:=Math.Exp (func.arguments[parameters] [0] .Value()) ;
V:=Math.Exp (func.arguments[parameters] [1] .Value()) ;
ke := cl/vV;

ka:=ke+Math.Exp (func.arguments [parameters] [2] .Val pa ra m ete r‘ise a S

Fi=l; mu[3]=ka-ke, i.e. ka > ke

D:=func.arguments[dose] [0] .Value() ;
t:= func.arguments[time] [0] .Value() ;
c:= F*D*ka/ ((ka-ke) *V) * (Math.Exp (-ke*t) -Math.Exp (-kz
IF ¢ > 0 THEN;
(*24%) value := Math.
ELSE
value:=-1000000;
(*25%*) END;
(*26%*) END Evaluate;
PROCEDURE (f: Factory) New (option: INTEGER): Function;
VAR
func: Function;
BEGIN
NEW (func) ; func.Initialize; RETURN func;
END New;
PROCEDURE Install¥*;
BEGIN
WBDevScalar.Install (fact);
END Install;
PROCEDURE Init;

VAR

f: Factory;
BEGIN

NEW(f) ; fact := £;
END Init;

BEGIN

(*14)  END WEDewPKLabsim. Press K to compile



Hardwiring functions in WinBUGS

* More than 1 templates exist to cover cases where more
substantial modifications are needed, such as when the
output is a vector

* Also different templates are provided for user-defined
statistical distributions

* A completely separate package called WBDiff works in the
same rationale and provides implementation of Runge —
Kutta ODE solver



Model defined by ODEs in WinBUGS

With the WBDev any arbitrary function can be calculated including one
whose output is generated by internal iterations inside the Pascal
routine.

In this way an ODE or PDE may be solved and its output returned to
Winbugs, buy implementing and ODE solver in Pascal.

WBDIff is a package that implements Runge-Kutta 4t and 5t order
which is a variable step non-stiff ODE solver

Needs to be installed like the WBDiIff but it is independent from it

Allows specification of systems of ODEs within WinBUGS language for
convenience (slow option)

But also provides templates in Pascal for fully precompiled functions
like in WBDev (faster option)



Example: Fitting a simple ODE pharmacokinetic model to data

Parameters

CL: clearance (3.75 L/h)

V: volume of distribution (25 L)

Ka: absorption first order rate constant (2 h?)

Dose

dA
— = _kaAl
dt
Absorption, k, dA
2 = kaAl - keAZ
dt
Initial conditions
Elimination, k,=CL/V A, (0)=dose, A,(0)=0

Observable is concentration in circulation

C,=A,/V



Include ODEs in coded in WinBUGS language

sol[l:n.grid,l:dim]<-ode(init[1l:dim] ,grid[l:n.grid] ,D(C[1l:dim],t) ,origin, tol)

Ode function / /
Initial conditions

Time points

Gradients

Initial time (0)
Tolerance (1E-3)

% = kaAl - keAz
dt

D(A[2], t) <- ka * A[1] - ke * A[2]



WinBUGS code for ODE model

model {
for(i in 1:n) {
conc[i] ~dnorm(logmodel[i], tau)
logmodel[i]<-log(solution[i,h 2] /V)
}
solution[l:n, 1:2] <- ode(init[], times[], D(A[1:2], t), origin, tol)
D(A[1], t) <- -ka * A[1l]
D(A[2], t) <- ka * A[1l] - ke * A[2]

ke <- CL/V
CL<-exp(mu[l])
V<-exp (mu[2])
ka<-exp (mu[3])+CL/V

init[l] <- dose; init[2] <- O

mu[l:3] ~dmnorm(prior.mean|],prior.prec|,])
tau~dgamma (0.001,0.001)

sigma<-1/sqgrt (tau)
}



ODE hardwired

model {

for(i in 1:n) {
conc[i]~dnorm(logmodel[i], tau)
logmodel[i]<-log(solution[i, 2] /V)

}

solution[l:n, 1:2] <- one.comp.model (init[], times[], mu[], origin, tol)

ke <- CL/V
CL<-exp(mu[l])
V<-exp(mu[2])
ka<-exp (mu[3])+CL/V

init[l] <- dose; init[2] <- 0

mu[l:3] ~dmnorm(prior.mean|],prior.prec|,])
tau~dgamma (0.001,0.001)

sigma<-1/sqrt(tau)
}



Component Pascal code for ODE module

MODULE WBDiffOneCompModel;

IMPORT
WBDiffODEMath,
Math;

TYPE
Equations = POINTER TO RECORD (WBDiffODEMath.Equations) END;
Factory = POINTER TO RECORD (WBDiffODEMath.Factory) END;

CONST
nEq = 2;

VAR
fact-: WBDiffODEMath.Factory;

PROCEDURE (e: Equations) Derivatives (IN theta, A: ARRAY OF REAL; n: INTEGER; t: REAL; OUT dAdt: ARRAY OF REAL);
VAR

i: INTEGER;

ka, ke,cl, V: REAL;
BEGIN

cl:=Math.Exp (theta[0]) ;

V:=Math.Exp (theta[l]);

ke := cl/V;
ka:=ke+Math.Exp (theta[2]) ;
dAdt[0]:= -ka*A[0];

dAdt[1l]:= ka*A[0]-ke*A[1l];
END Derivatives;

Press AK to compile

And include a line in the “Grammar.odc” file found in “[root]\WBDiff\Rsrc”

v <- "one.comp.model" (v, v, v, s, s) "MathRungeKuttad45.Install; WBDiffOneCompModel.Install"



ODE results

We obtain similar results but slower

ODE model in WinBUGS language 130 secs and hardwired 30 secs

node mean sd MC error 2.5% median 97.5% start sample
CL 3.767 0.04525 4762E-4 3679 3.767 3.858 10000 10000
Y 236 0.6082 0.00747 22.41 2359 24 .84 10000 10000
ka 1.664 0.09154 0.00124 1.494 1.661 1.857 10000 10000
sigma 0.04193 0.009624 9316E-5 002772 0.04041 0.06491 10000 10000

Analytical model in WinBUGS language 23 secs and hardwired 4 secs

l node mean sd MC error 2.5% median 97.5% start sample
CL 3.768 0.0461 4 465E-4 3675 3.767 3.861 10000 10000
W 23 61 0.6031 0003421 2248 2359 2487 10000 10000
ka 1.664 0.09315 0001276 1.493 1.66 1.86 10000 10000

sigma 0.04201 0009663 9.803E-5 002773 004043  0.0655 10000 10000



Issues with ODE solver

Slow! Typically larger models are considered so it will be slower than the
example shown

More dimensions may need more iterations to mix properly, so even
slower

WBDiff ODE solver is for non-stiff problems
Noninformative priors may cause problems as certain extreme
combinations of parameters may produce numerical problems inthe ODE

solver (Trap windows)

Often informative priors are needed to avoid sampling problematic
parameter values



Summary - kinetics

Fitted a simple kinetic model to data

Looked at chain convergence

Parameter distribution is multivariate normal and often on the log scale
Looked at different residual error models and prior for that

Mentioned structural identifiability and why this is particularly important in
MCMC

Use scripts and call WinBugs from other programmes

Hardwire computationally intensive expressions (nearly all but the simplest) to
speed up calculations

User ODE models, in WinBUGS language and hardwiring them

Compared differences in speed for functions and ODEs in WinBUGS language and
hardwired
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Individual parameter values: Also posterior, influenced by prior only indirectly




Bayesian individualization

prior population
parameters

individual

individual
measurements
parameters
(sparse)

I > f

Useful in estimating individual parameters with very little data

Applications: Therapeutic Drug Monitoring
Dose individualization



Fitting a PK model to population data

model {
dose<-600000
for (i in 1:n.ind) { oop throug
for (j in off.datali]:(off.datali + 1] - 1)) { the data, here
. . using offset
data[j] ~ dnorm(model[j], tau)
model[j] <- PKlabs1lm(theta[i,1:p],dose,time[j])
} S
theta[i, 1:p] ~ dmnorm(mu[1:p], omega.inv[1:p, 1:p]) Int(?rm.d.lwdual
} variability (11V)

tau ~ dgamma(tau.a, tau.b)
sigma <- 1 / sqrt(tau)

mu[1l:p] ~ dmnorm(mu.prior.mean[1:p], mu.prior.precision[1:p, 1:p])

omega.inv[1:p, 1:p] ~ dwish(omega.inv.matrix[1:p, 1:p], omega.inv.dof) Inverse-Wishart

omegal[1:p,1:p] <- inverse(omega.inv[,]) prior for IV




Interindividual variability

* Usually we can assume a Normal distribution which means log-normal
when the parameters are on a log-scale

* This normal distribution is usually multivariate to account for
correlations between parameters

* For multivariate inter-individual variability the Inverse-Wishart
distribution is the only option for the variance-covariance matrix

* But partitioning is possible in groups with multivariate assumptions for
relevant parameters, e.g. CL and V, and setting others independent

* Normal distribution may sometimes be replaced by a Student-t
distribution which is more long tailed to make room for outliers

n ~ St(m, P!, n)

*Where n is a small integer. For a large n Student-t is identical to Normal



Wishart distribution

e The multivariate equivalent of chi-squared or gamma distribution
* Least informative when degrees of freedom = dimension

* |t produces symmetric positive-definite matrices

* Not entirely non-informative

* But it is the only option for multivariate variance terms and unlike univariate
variance terms uniform distributions cannot be used.

* In Winbugs the parameterisation of Wishart dist. differs from that of
literature:

In most literature: Wish(Z,v) where 2 scale matric and v deg of freedom.
Such that: mean = v2

But in Winbugs:  dwish(R=21, v)

Such that: inv(mean) = nR* = I/v so a reasonable choice for R=vQ



Data with hierarchical structure

Data with hierarchical structure, such measurements corresponding to
different subjects and where this information needs to be preserved
can be organised in 3 different ways:

1. Using an offset vector:

Model
for (i in 1:n.ind) {
for (j in off.data[i]: (off.data[i + 1] - 1)) { ..

Data
off.data=c(1, 3, 5, 7, 9,

data=c(3.36365, 3.79197, 1.33584, 3.18724, 3.25417, 3.44967,
4.7714, 3.36978, 3.30257, 3.43646,..

time=c(1, 4, 0.08, 6, 2.5, 3, 2.5, 10, 0.25, 10,



Data with hierarchical structure

2. Use nested indexing

Model

for (j in 1l:n.obs) {
data[j] ~ dnorm(model[j], tau)

model[j] <- PKlabslm(theta[ind.id[]j],1:p],6 dose,

}

for (i in 1:n.ind) {
theta[i, 1:p] ~ dmnorm(mu[l:p], omega.inv[l:p,

Data
ind.id=c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ..

data=c(3.36365, 3.79197, 1.33584, 3.18724, 3.25417,
4.7714, 3.36978, 3.30257, 3.43646,..

time=c(1, 4, 0.08, 6, 2.5, 3, 2.5, 10, 0.25, 10, ..

time[]j])

1:p])

3.44967,



Data with hierarchical structure

3. Use a matrix and put NA where there is no data

Model

for (1 in 1l:n.ind) {
for (j in 1:8) { ..

Data

time[]
0.08
0.25

1

2.5

3

4

6

10

datal[,1] datal[, 2]
NA 1.33584

NA NA
3.36365 NA
NA NA
NA NA
3.79197 NA
NA 3.18724
NA NA

datal, 3]
NA

NA

NA
3.25417
3.44967
NA

NA

NA

Or use the S-Plus structure format
data=Structure(.Data=c(..), .Dim=c(..))

datal[, 4]
NA

NA

NA
4.7714
NA

NA

NA
3.36978

datal[,5]
NA
3.30257
NA

NA

NA

NA

NA
3.43646



Descriptive covariates

A covariate is an independent variable in the structural model.
Usually there is at least one covariate in the model: time
Additional covariates may be used to describe better the data

Especially in population data, covariates can describe partly the observed
variability

Covariates may include: demographic data such as weight, age, sex, etc or
even genetic data such as presence of certain alleles of genes

Covariates are not parameters and are independent variables included in
the dataset, like time.

When covariates are included in the model additional parameters are also
included to build the functional relationship of the covariate in the model



Mathematical formulation for covariates

Assuming a structural parameter of the model with some physical meaning
e.g. a volume of distribution in a compartment (V)

A covariate e.g. weight (WT) may be included as a linear function

V=0, *WT

Where 6, is a coefficient to be estimated, values for WT are provided in the data
Apart from a coefficient an intercept could be included

V=0,+0,*WT

It is often better to parameterise such that the covariate is centred
V=0,+06,*(WT-WT__.,)

Then when WT = WT V=0,

mean’



Mathematical formulation for covariates

Exponential relationships are also useful
V =0, *exp( 6,*WT)
Or centred

V = 0, *exp( 6,*(WT - WT

mean))

These are linear on the log-scale

logV=1log 0, + 0,*(WT—-WT

mean)

And power-laws

V=0, *WT® centred V=0, *(WT / WT,_...,)%



Including covariates in WinBUGS

model {
dose<-600000
for (iin 1:n.ind) {
for (j in off.data[i]:(off.data[i + 1] - 1)) {

data[j] ~ dnorm(model[j], tau)
model[j] <- PKlabsim(thetali,1:p],dose,time[j])

}
thetali, 1:p] ~ dmnorm(theta.mean[1:p], omega.inv[1:p, 1:p])

theta.mean(i, 1] <- mu[1]
theta.meanli, 2] <- mu[2] + mu[3]*(WT[i]-WT.mean)
theta.meanli, 3] <- mu[4]

}

tau ~ dgamma(tau.a, tau.b)
sigma <- 1/ sqrt(tau)

mu[1l:q] ~ dmnorm(mu.prior.mean[1:q], mu.prior.precision[1:q, 1:q])

omega.inv[1:p, 1:p] ~ dwish(omega.inv.matrix[1:p, 1:p], omega.inv.dof)
omegal[l:p,1:p] <- inverse(omega.inv|,])




Additional hierarchical levels

* To include an inter-individual variability is the most common use of
hierarchical modelling

e But more levels can be added to account, for example, inter-study or
inter-lab variability, as studies performed in different labs may have
unexplained variability

* Also an inter-occasion variability can account for unexplained
variability between different occasions but in the same individual



Hierarchical model of 4 levels including inter-study variability
(or inter-occasion)

3-level model 4-level model

inter-individual variability

inter-individual variability IA‘(L ' inter-population variability

mean population value sub-population mean values mean inter-population value

structural model Ykl.jzf(gki,xlj)—i—gkij
7 A

residual variability / g|ky_ ~ N(

sub-population / monitor

(or inter-occasion) Cki N

inter-population

(or inter-individual) Okﬂ'ﬂ, ;v, V) or OkN N(ll, Z)
Gncertainty / \ \ A

(prior) u ~ N(m,P_l) 2_1 ~ W(Sl ,Vl) 9_1 -~ W(Sz ,Vz) O-k_Z -~ r(ak ’bk)

Prior influences only indirectly th@meters of interes

o /




Exchangeability

When combining datasets the populations are

Bayesian analysis is ideal for combining information from different sources.
considered exchangeable
Override population non-exchangeability by modelling

w
population differences such that they become

population exchangeable.

a) Systematic bias: model with covariates

b) Random differences: model with an extra level of hierarchy
which accounts for the random differences.



Bayesian individualisation

prior population

parameters
individual
individual
measurements
(sparse) parameters
P [ ]

It II\

prior inter-population
parameters

test study

test study parameters

I > ‘




Multilevel hierarchical data structures

When multiple hierarachical levels are present the data structures
become more complicated and the use of nested indices or offsets is
necessary

Example with 2D offset as a matrix

for (k in 1l:n.st) {
for (1 in 1:n.ind) {
for (j in (off.data[k,i]): (off.datalk,i + 1] - 1)) {

Nested indexing

for (j in 1l:n.obs) {
data[j] ~ dnorm(model[j], tau)
model[j] <- Somemodel (zeta[st.id[]j], ind.id[j],1:p],time[]j])
}
for (k in 1l:n.st) {
for (i in 1:n.ind) {
zeta[k, i, 1:p] ~ dmnorm(thetal[k,l:p], omega.inv[l:p, 1l:p])
}
thetal[k, 1:p] ~ dmnorm(mu[l:p], sigma.inv[l:p, 1l:p])



Informative prior assighment

* The great advantage of a Bayesian analysis is the potential of using priors

* When non-informative priors are used a Bayesian analysis is a equivalent to

a frequentist approach but the priors may not be completely non-
informative

* Sources of prior information may be literature, or simply a previous run

 Typically prior information would be available in the form of expected
values and associated uncertainty, but in WinBUGS we need to convert this
into hyperparameters for parametric distributions (normal , gamma,
Wishart, etc)

* A non-parametric discrete prior assignment is technically possible by using
the following trick. However possibly slow and with numerical problems:

Prior for parameter D is one of a set of values, d[1], ..., d[K], with probabilities p[1], ..., p[K], then
specify the arrays d[1:K] and p[1:K] and use:

M ~ dcat(pl[])
D <- d[M]



Summary - hierarchical

* Hierarchical models are implemented naturally within the Bayesian
formulation

Usually a 3 level approach including inter-individual variability is used

It is possible to include covariates other than time

More levels are possible including inter-occasion or inter-site variability

Given a population estimates Bayesian individualisation is possible

Importance of prior and data exchangeability



Sequential use of Bayes’ theorem

The product of the prior and the data likelihood normalised
gives the posterior distribution

posterior #2 pasteidbr

i prior

g flaimBisipgoc

5. value

poo= POLIXD)
p(0)1(X|6)do

So the result of a WinBUGS run can be used as a prior for a future run



Parameterise distributions (from WinBUGS runs)

To convert expected values and associated uncertainty (var) to

hyperparameters of parametric distributions when these come from chains of
a previous WinBUGS run, we can use formulas

Typically in analysis of kinetic data we are dealing with the following
distributions

Normal: Hyperparameters are mean and precision (in WinBUGS) which are
readily available

Gamma (for the inverse of a variance term): We make use of the fact that

. o)
E(Tpost) = (l/b V'dr(‘[post) = (7/[)_

Which means that:

. Ez(Tpost) b — E(Tpost)

a = ) =
var(zpost) var(zpost)



Parameterise distributions (from WinBUGS runs)

Wishart (for the inverse of multivariate variance terms):
We make use of the fact that

. \ P
E(W)=v-S var(W) =2v .07,
Where o, are diagonal elements of S

So we have:

E (Szpobt)ll | E(Sz

v = S =

\dl(SZ

poat)

post )1 ! v

Remember that:

parametrisation of Wishart in WinBUGS uses R=5"1

Will obtain as many v as the number of elements and have to choose the average
or the minimum (least informative)



g-q plots (diagnostic plot)

* Plot the quintiles of 2 distributions

* |f the graph is on the identity line (...) the distributions are the same

distribution 2

distribution 1



Issues from combining information

Example: Usual model 1-compartment PK 15t order absorption model

2 datasets same number of subjects, both datasets from the same population:

We want to do sequential analysis and compare it to combined analysis

Fit the first dataset with WinBUGS and
use the results as priors to fit the
second dataset

First parametrise the result of the first
run using the formulas: looks ok

Normal (population means)
81.34 —40.12 =9.477

m = (7.15719,8.92433, —0.269377), P = | —40.12 72.3863 —15.61
—-9.477 —15.61 25.16

1.383 1.063 1.168
S=1{1.063 1.614 1.007

1.168 1.007 2.707

Wishart (l1V)
v =38,

Gamma (Res error)

a=84.17, b=3.939

|

parametric
prior

prior prior

pargrri%?tric parametric parametric

parametric
prior

i 7 // /f’
posterior posterior  posterior

@)

/

-1 H

|~

%

""
J

.

posterior

/

posterior

posterior

posterior



Issues from combining information

Then use this parametric prior to analyse the second dataset and
compare to combined analysis: (GOOD!)

He Uy Uka* Qe Qv Qkes ©

A

Combined

Sequential

But the datasets were from the same population what if they weren’t?

Same problem but one parameter different between the 2 datasets (NOT GOOD!):

HcL My MKa* Qcr Qy Oga* o

Sequential

Combined



Sequential

Issues from combining information

The reason is that the independent Normal and Inverse-Wishart distributions

are not the conjugate prior for this problem. It is called semi-conjugate and is
used for convenience.

n ~ N(m,P!) Q ~ Inv-Wish(X,v)
The true conjugate is this:
i~ N(m,Q/c) Q ~ Inv-Wish(X,v)
Where v is degrees of freedom. This is the Normal-Inverse-Wishart (NIW)

distribution. It is not often used because it is too restrictive but when
applied in the problem we saw before (FIXED!):

e Wy MKa* Q. Qv Qs ©

A

Combined



The “cut” function

We looked at sequential vs combined analysis and it compared well but
there is a difference between the 2 in terms of information flow

Sequential Combined

- -

- -

. N

The “cut” function can work as a “valve” of information flow, preventing the
updating of the parameter being cut, but allowing it to contribute to the rest of
the model

par.cut <- cut(par)



Parameterise distributions (from literature)

In literature inverse variance terms will probably not be available but instead
the variance terms themselves would be reported (if you are lucky)

This is not trivial because the average of inverses is not equal to the inverse
of the average

Therefore we can use the following:

Inverse-Gamma:

b
52 — b—R var(c?) = K

ap — 1 (ag — 1)*(ag — 2)

From which it follows that:

X ADN3 g A2 (2
(6%)* + 2var(c?) b — (0°)" + o-var(s”)
.-

var(c?) var(c?)

ap =



Parameterise distributions (from literature)

Inverse-Wishart:

— EM’ 2(2kk)2
(v=—p=3)v=p—1)°

v—p—1

From which it follows that:

G pvar(@) + 2(Q)? (Q)-!
' var(£2;,) v—p—1

Note that:
parametrisation of Wishart in WinBUGS uses R=21
Will obtain as many v, as the number of elements and have to choose the average

or the minimum (least informative) and set it as your final v



Parameterise distributions (from literature)

But also for the populations means, we saw that the NIW prior may be
preferable to the simpler but more flexible partitioned prior.

In the case we want to use the NIW, since the covariance of the Normal
distribution is :

cov(u) = ﬁ/('

We have to calculate the degrees of freedom c as an average:

c = Tr[ﬁ . (‘CO\-’(';t')")"]]/P



Notes on using informative priors from previous studies

Applying a prior directly on a parameter of interest is a strong

assumption. The result is a weighted average between the prior and
the data likelihood

Exchangeability of prior and dataset is important in this case because
of the very drastic influence of the prior

Applying a prior on a hyperparameter which sits above the
parameter of interest in a hierarchical structure is a more
conservative assumption.

NIW prior may be preferable to the semi-conjugate prior but more
restrictive



Summary - priors

Sequential applications of Bayes’ theorem: output of WinBugs may be used
as prior

Output of WinBUGS is non-parametric while priors need to be parametric

One way to parameterise is by using formulas of mean and variance for the
different distributions

Mentioned versions of these appropriate for WinBUGS output and others
appropriate for estimates reported in literature



Model selection

Between 2 competing models which one best describes the data?

This has to take into account the model complexity as models with more
parameters may have a better fit but the improvement may not be
significant

Routinely, Akaike Information Criterion (AIC) may be used:

AIC =2k —2log L

Where k is the number of parameters and L is the maximum likelihood
value.

The model with the lower AIC is the preferable

The model closer to the data will have the smallest “-2 log L” term and the
model with the highest number of parameters is penalised for that fact



Deviance Information Criterion (DIC)

A generalisation of AIC is Deviance Information Criterion (DIC)*

DIC=p,+D

where D bar is the posterior mean of the deviance a measure of goodness of fit
Deviance = -2 Log L(data|8)

Py is the effective number of parameters and calculated as mean posterior
deviance (D bar) minus deviance at posterior mean of the parameters

pp = Ey,[D]— D(Ey,[6])
D — D(6);

In non hierarchical models p is approximately equal to the actual number of
parameters. In general it isn’t.

* Spiegelhalter D. et al., Journal of the Royal Statistical Society, Series B, 2002 64(4):583-616.



DIC in WinBUGS

Because of its nature DIC can be readily calculated in an MCMC run

Conveniently, it is readily available as an item in WinBUGS “Inference” menu

Model | Inference Options Info

Samples...
Compare...
Correlations

Summary. ..
Rank...

This opens a dialog box which allows monitoring it and provides detailed output
for DIC

& DIC M=] 3
=% DIC Tool B bbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic =
PITTTTTTTTTTTTIP e . nOdes
| sel | clear | DIC | Disar Dt pD pic
SIS : conc -54.547 -58.819 4272 -50.274

total -54 547 -58.819 4272 -50.274 LI




Characteristics of DIC

Readily available in WinBUGS

Akaike like behaviour: lowest DIC better model and penalises additional
parameters

DICs are comparable only over models with exactly the same observed
data, but there is no need for them to be nested

Differences in DIC values considered significant (Very roughly):
- differences of more than 10, are considered significant.
- differences between 5 and 10 are substantial
- differences in DIC less than 5, and the models make very different
inferences, then it could be misleading just to report the model with
the lowest DIC

Value of p, is dependant on parameterisation (disadvantage) and may
even be negative



Other ways for Bayesian model selection

Another version of DIC which uses quantity p, instead of p, has been
implemented in R2ZWinbugs, where p,, is invariant to parameterisation

Bayesian Information Criterion (BIC) is an alternative to DIC but is not
straightforward to calculate in WinBUGS

Bayes Factors can also be used for model selection in the way a
likelihood - ratio test is used

But: DIC — BIC — Bayes Factors, have different aims and are not really
alternatives for the same problem



