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MRE numerical algorithm and its steady-state solution under partithhe powerful tools of differential geometry are extensively used [1], [2],
ular conditions. A full explanation of this trend is difficult, because of7], [10], [14]-[16], [19], [20], [23]. In the other category of works, the
the complexity of the data association process built in the MSPDA atate observation problem is studied considering functional parameters
gorithm, but one explanation would be that processing the best sensfomonlinear systems, such as norms, gains and Lipschitz constants [9],
last improves tracking performance of the sensor system as a whlg], [21],[25]-[28]. Most works of both categories provide a solution of
Analyses over ranges of sensor parameters show that tracking systeerstate observation problem only fdasse®f systems.
performance of the sequential MSJPDA filter, in terms of the rms po- Among the works of the first category, the papers [1], [13], [16], [19],
sition error, favors using sensors of comparable qualities, and that pand [20] consider the class of nonlinear systems in which the nonlin-
cessing the worse sensor first gives better results if the sensor qualigiasty is given by an output injection (conditionally linear systems). For
do not differ by a large amount. such systems, a complete observation theory is available, which also in-
cludes adaptive observers. In [8], [10], a characterization of the class of
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. . systems observable for any input is given, and for these, an exponential
Sv;rs]se ;l;;hec;:; f:igttt(e:. o$r$;§;;22£/ur;r:r?éﬁ %‘x;gzlrl;ﬁgofr;tor?iébserver is provided. Stronger hypotheses are rfequireq for the construc-
help in debugging the simulator ' ' ffon pf _observers for the <_:Iass of systems cor_1$|der(_ed in [14], [15] that
' admit linear error dynamics. In [23], [24], a high-gain observer of the
REFERENCES type presented in [6] is used inside a control loop. This kind of observer,
[1] Y.Bar-Shalom and T. Fortmanfiracking and Data Association New like the one intrqduced in [_26], requires the exp_licit_computation of the
York: Academic, 1988. state as a function of the input and output derivatives. When the con-
[2] T.E.Fortmann, Y. Bar-Shalom, M. Scheffe, and S. Gelfand, “Detectioifol loop is closed, the input derivatives are available while the output
thresholds for tracking in clutter—A connection between estimation argkrivatives must be estimated. The paper [23] also considers observers

:/ilgrr\allgégcessing,lEEE Trans. Automat. Coniwvol. 30, pp. 221-292, or nonlinear systems that have a particular block-triangular structure,

[3] C.W.Frei, “A comparison of parallel and sequential implementations /SO including th? class of umformly observab!e systems [8], [.10]- In
amultisensor multitarget tracking algorithm,” M.S. thesis, Northwesterf2], the observation problem is solved for nonlinear systems with full
Univ., Evanston, IL, May 1995. relative degree. Reference [9] considers observers for the class of bi-

[4] C.W.FreiandL.Y.Pao, “Alternatives to Monte-Carlo simulation evaljjnear systems, with linear dissipative drift.
uations of two multisensor fusion algorithmgutomatica vol. 34, pp.

103-110. Jan. 1998 Most of the works of the second category consider linear observable
[5] V. Naka'mura, Advanced Robotics: Redundancy and OptimizaSystems with nonlinear perturbation terms characterized by a Lipschitz
tion. Reading, MA: Addison-Wesley, 1991. constant and/or by a finite bound on the norm. In [21], [27], nonlinear

[6] L. Y. Pao and L. Trailovig“On the order of processing sensors in sesystems in which the output is a linear function of the state are consid-

g‘é?\?}'g';?g:ggg”é"j‘:"ojnlfngflfggg””pg'.gzc’;gf;r_“;‘ilTOC' Amer. Conr. ered. In [27], for such a class, the existence of an exponential observer

is implied by the existence of a solution for a Lyapunov-like inequality

involving the Jacobian of the drift term. In [21], a linear part can be
extracted from the drift and the existence of the observer is implied by
the existence of a solution for an algebraic Riccati equation. In [28],
the result of [27] is extended to a larger class of output functions. In
[17], an observer is presented for the class of systems with linear and
stable drift, and nonlinearity only in the forcing term.

All of the above-mentioned papers restrict the analysis to classes of
nonlinear systems, characterized by geometrical properties or by the
particular structure of the dynamic equations. The aim of this paper

) ) ] is to consider general nonlinear systems affine in the control and to
_ Abstract—in this paper, the problem of state observation with exponen- ¢, expioit the property ofirift-observabilityfor the construction of
tial error decay for nonlinear systems affine in the input is considered and . . .
an observer is proposed. For such an observer, the drift-observability prop- &N observer that works for meaningful classes of input functions. The

erty of the system (.e., observability for zero input), together with an as- nonlinear systems considered here have the form
sumption on the input amplitude or on the observation relative degree, are

Design of State Observers from a Drift-Observability
Property

Manuela Dalla Mora, Alfredo Germani, and Costanzo Manes

sufficient conditions for exponential convergence of the observation error. () = f(x(?)) + g(a(t))u(t) (1.1a)
The existence of an exponential observer is correlated to the existence of a i b
solution for an H, Riccati-like inequality. Global and semiglobal conver- y(t) = h(x(t)) (1.1b)

gence results are presented. ] ]
wherez(t) € X C R", u(t) € U C RP andy(t) € R g(z) =

[g1(x),- - -, gp(2)] is amatrix whose columns afé" (X') vector fields,

f(x)is aC*(X) vector field, and the vector function(z) is C*(X)

too, wherek is an integer that allows all differentiations needed in the
Mostrecent contributionsinthe field of state observation for nonlineRaper.

systems canberoughly classified into two categories. Inone, the geomet-

rical properties of the vector fields defining the system are exploited and Il. PRELIMINARIES

Index Terms—Nonlinear observers, nonlinear systems, observability.

|. INTRODUCTION

Definition 2.1: A function A(x) is said to beaffine linear growth
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A(x) is uniformly Holder inS if a positivek and a constart € (0,1)  The matrixH,(z) isd; X p, with d; 2 s; —r; + 1, and is defined as

exist such thaA(z1) — A(x2)|] < hljz1 — 22]|°, Va1, 22 €5. =
Recall that the Lie derivative of ordér(k nonnegative integer) of a

scalar function\(x) along a vector fieldf («) is recursively defined as

—1

. 5. a7
Hj(x)é[LgLf,ﬂ hy(e), oo, LoLY h,j(l»)] . (@11)

Defining the multi-index d 2 (di,---,dz), and the integer

follows: / - . )
W L) 2 AGe) e >_i—y d;,an x d matrix 5 - of zeros and ones can be defined as
A x) = M), ' LT
YL k=1y .= |:d|a£‘g:1{5j}:| where S, = |:0(7‘j*1)><dj:|
A 2 L Zf@), k=12 2.1) O3xa 1,
O . (2.12)
Foreachj = 1,---, ¢, consider the vector function ) ] )
s\ A O " wherel,; denotes the; x d; identity matrix ands = >°7__ | s;.
O (w) = [hj(x) Lyhj(e) - L7 hi(e)]”. (2.2) Now, the product)s(z)g(z) can be definitively written as
Lgt? = (s1,-- ° s4) be a multi-index such thgt?_, s; = n. Con- Os(a)g(e) = Fs +Hs =(z), where
sider the following square map AT ’ .
5 " Hg;’r = |H x), H: (x . 213
Be(r) 2[00 o B0 (2.3) @ 2 [, H ) (243
Denoting withYs the vector of output derivatives Now, let L(x) £ [Lihi(x),- -+, Ly he(x)]". Itis useful to define
. (s1—1) (sq—1)T the following vector and matrix functions, defineddn(Q2):
Y5 =[wn U Yq yq © ] N . o . L
(24) L;(Z) = L;(@; (2)) H;T(Z) = HZT((PT (Z)) (214)

if u(t) = 0, itis Ya(t) = =(x(t)), and, therefore, invertibility of the !t iS €asy to check through direct computation that a drift-observable
map®; and the knowledge of vectd#; allow exact state reconstruc- SyStem (1.1) can be rewritten using the coordinate transformatien

tion. This property justifies the following definition. P5(x) as
Definition 2.3: A map ®<(x) is said to be ambservability mapn i=Asz+ BsLs(2) + Fs +Hz 7(2)u
aset? C R" if it is a diffeomorphism in an open set that contains or y =Cyz (2.15)

coincides with(2. A system that admits an observability maglrfor
a givens is said to barift-observabldn 2.
It follows that the Jacobian associated to an observability map

where As;, Bz, and Cz are block-diagonal matricests =
diag_,{4,}, Bx = diag_,{B;}. Cx = diag_,{C;}. in
which theg triples(A;, B;, C;) are Brunowsky matrices

Qz(x) = 9z (2.5) 4, = 0(3j71)><1 Isj—L :| . B = |:0(ij1)><1:| )
is nonsingular if2, and the inverse map of= ®+(z) exists in®s(£2) 0 O1x(sy—1) ] 1 /
and is denoted ag = ®Z'(z). Although, in general, such a map is Ci=[1 Oixs;—nl- (2.16)
difficult to compute, its Jacobian can be easily computed as As it will be shown in Section IIl, the existence of an exponential ob-
2% (2) 1, server for system (1.1) is related with the existence of a solution for the
0 = Q5 (@), (26)  following H.. Riccati-like matrix inequality:
SR PP ollowing H. Riccati-like matrix inequality:

Definition 2.4: A system is said to beniformly Lipschitz drift-ob-

A Jo( A_ _ 700 \T 72‘
servable(ULDO) in a set2 C IR™ if it is drift-observable inf2 and (As — KC5)P + P(As — KC5) " + BsDBs

the mapsb; and®=" are uniformly Lipschitz in® and ®5(Q), re- +p*Fs7Fs 7 +2aP +°P* <0 (2.17)
spectively. IfQ2 = TR", the system is said to bglobally uniformly . . nx
Lipschitz drift-observabl¢GULDO). wherep, «, and+ are given positive real parts add € R"*? and

P € R™*" are the unknown matrices.
Definition 2.6: A pair (I, P) is said to be astabilizing solution
pair if it satisfies inequality (2.17), all eigenvalues.¢f — K Cs have

In the state observation theory, it is useful to note dhservation
relative degre€a concept weaker theelative degreg The following

notation is needed ) ) 8 ! >
s A R . negative real parts anfl is symmetric positive definite. [ |
'L?{:fhj(x) - [Lglthf(_x) o Lo, Lih(x)]. . 2.7) The following theorems state some relationships between existence
Definition 2.5: Theobservation relative degreg of the jth output  of a stabilizing solution paif &, P) and the values assumed by the

of system (1.1) in a sé2 C IR" is an integer such that triple (p. . 7) of coefficients. The proofs are extensions of those in
Vr € LgLihi(x) =0, s=0,1,---,r; =2 [4] for the single-input/single-output (SISO) case. For further details,
JreQ: L,LY 'hi(x) #0. 2.8 Seeldl

Theorem 2.7:For anya > 0 and~ > 0, a strictly positivep exists
such that for any < p, the H., Riccati-like matrix inequality (2.17)
admits a stabilizing solution pafi<, P).

Theorem 2.8: Foranyx > 0 andp > 0, a positivey exists such that
for any~ < 7, the H. Riccati-like matrix inequality (2.17) admits a
stabilizing solution paif K, P).

Theorem 2.9:1f 5 < 7 (componentwise), then for any positive triple
Note that the first-; — 1 rows of matrix (2.9) are identically zero in (p, a, ), the H.. Riccati-like matrix inequality (2.17) admits a stabi-
Q(if s5; < r;, the product (2.9) is zero). Without loss of generalityjizing solution pair( K, P).
assume the observability map such that> r; for the firstg outputs  Theorem 2.10:Consider theH.. Riccati-like matrix inequality
ands; < r; for the remaining; — 7. so thatthe lasy>7__., s, oW (2 17) with given positive) and~. If § < 7, then for any= > 0 a
blocks of the produat)<(:)g () are identically zero. On the contrary, positive o to be put in (2.17) and a stabilizing solution pai, P)
for the firstg row blocks, one has the following structure: exist such thali P|| /o < e.

()<I>;j () _ [0 —1yxp . _ Remark 2.11:In the proofs of all the theorems above, the pair
—p, )= { H(x) } o d=heng (2.10) (&, p) that solves (2.17) is provided (see [3], [4]). The structur&of

The multi-indexr = (r1,-- -, r4) is calledvector observation relative
degree [ |
The product of)=(x) with the matrixg(z) has an interesting struc-
ture. Consider first the product
0<I>;j () 51 T
L) =[Lahy@), e LI @] @29)
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is chosen block-diagonal, so that — A'Cs is in block-companion The dynamics of the observation errorzircoordinates is

form
é. = (As — KCs)e. + Bz (z, 2) + F5 7v2(z, 2)u, (3.5)

K =diag_ {K;}, K;=[k. - k)" (218
‘ with
Let K;(};) denote the vector gain that assigns eigenvalues A = _
N, = (Moo )je,) to the jth block 4; — K;C;. If the vi(z, %) = Ls(z) — Ls(%),
eigenvalues of each block are distinct, this is diagonalized by a va(z, 2) EN Hs+(z) — Hs#(2). (3.6)

Vandermonde matrix, denoted d$(}\;), and, therefore, matrix

Az — KCs is diagonalized by the block Vandermonde matrisBeing ALG, the functions=(z) and H+ -(z) the perturbations are
Vz(\) £ diagl_, {V(X;)}. whereX = (X,.---,X,) is the set of suchthatz, € IR
eigenvalues assigned tb: — K C5. Given a positive parametes,

- : oAy S lloa (2, )1 < 2 lles|I* + b2
consider the set of eigenvalugsw) = (Ai(w),---, Ay(w)), where LT ’é R
Nj(w) = (—w,---,—w®). Let K (w) denote the gain matrix, with llvz (2. )17 <Agllell” + b 3.7

structure (2.18), that assigns the Sétr) of eigenvalues to matrix . . S . . .
As — K (w)Cs, and letVs(w) denote the block-Vandermonde matriXConS|der now théf .. Riccati-like inequality (2.17) with prescribed

2 2 2 e i
that diagonalizes matri¥y — K (w)Cs. In all proofs of Theorems and~” = 77 + v From Theorem 2.7, a positijeexists such that
2.7, 2.8, 2.9, and 2.10, it is shown that the [dif(w), P(w)), with the inequality admlltsastabllllzw.lg solution pA(AIt, P). Take S}JC?‘E as
P(w) = (V2 (w)Va(w))™", solves thell, Riccati-like inequality of the bound on the input functione., setuis = p, and takek as the
the theorems for a sufficiently large value of the parameter ~—m  ©observer gainin (3.1). Use the symmetric positive definite matrte
define the following positive definite function of the error
I1l. EXPONENTIAL OBSERVER FORNONLINEAR SYSTEMS

. . . . v(e:) = CTP_1(,’,:. (3.8)
In this section, it is proven that a dynamic system of the type N

B(t) = F(E() +g(@()u(t)+Q  (#(1) K (y(t) —h(2(t))) (3.1)
S)y=el (P (A5 — KCs) + (A5 — KC5) "' P e

is an exponential observer for system (1.1), provided that some condi? (3 )
tions both on the system and on the inpatre satisfied and that the gain +2¢! P7' Byvi(2,2) + 2¢! P7' Frrua(z, 2)u. (3.9)
matrix K is properly chosen. The basic assumption for the existence . ) .

of an exponential observer is the drift-observability of the system. Tﬂ—ge following inequality that holds any pair of vectarandb and for

rather technical assumption of Uniform Lipschitz Drift-Observabilig"y "¢al?

The derivative ofv along the error trajectory is

(ULDO) is needed too, together with the following: T . 1 )

Assumptiort®: (ALG nonlinearities). The matrix functionss( ) 2a7b < f7{|all” + 32 10 (3.10)
andHs, (=) defined in (2.14) are ALG in a sét (see Definition 2.1). '
Let~1, v;7 andbr, b7 be the relevant constants. allows to write the inequality

All theorems in the following will be stated under the assumption ) g - ST
H°: thatis quite general, but it does not give strong convergence results ¥ < €= (P (A5 — KC5) + (4 — KC5)' P ) e

for the observer. Stronger results on convergence are obtained if the +TPp 1B BT P te. 4 loa |2

following assumption is made instead: N ° ) [0 w2

~ Assumptiori': (Lipschitz nonlinearities). The matrix functions +uigel PT B P o P el + T (3.11)
Ls(z) andHsz #(z) defined in (2.14) are uniformly Lipschitz in a set Um

S. Let~y andy4; be the Lipschitz constants. Taking into account (3.7), and noting tHatul|* /u3, < [|vz||. itis

Being thatH' is a particular case df°, in the following, all the-
orems will be stated only undét®. Global and semiglobal results on
state observation are presented.

p(z,2) <el P! ((A? — KC5)P+ P(As — KC5)"
+B:By + UzuF?FFglr + 7”2P2> Ple.
A. Global Observer + 0% + b2 (3.12)

Theorem 3.1: Assume that system (1.1) is GULDO and that th&xploiting inequality (2.17), satisfied by the current péit, P), it
property° holds inIR". Then, for anye > 0, a gain matrixik’ € follows
R for the obseryer (3.1) and strictly positive constgnts» and b < —2ae P e, 4 b2T + b?—,
us exist such that if|u(¢)|| < war, VE > 0, then ’

lle(t) = &) < pre” " [|l2(0) — 2(0)]] S o
T - Spie " ||lx - \ R _ e 2ot .
. | pea(t) e ulea(0) + T (12412 (3.14)
+p2 b2+ 02, Va(0),#(0) € R". (3.2) ] 20 ’
/ 2 /\rnax(P7 ) —2at 2
Proof: Consider the coordinate transformation given by the ob- lle-(OI" < Non (P € lle-(0)]]
servability map; = ®(x) andz = $3(#). For the observation errors —2at 24 p2
2 —sande. 2 : =z inall R™. iti +1_6 . Lt (3.15)
ex =xr —xande, =z — Z,Ina LItis oo N (P-1)° .
lle:ll < vegllexlls  llexll < vp-rlle:]l. (3.3) (Amax(+) andAmix(+) denote the max and min eigenvalue of a matrix).
s From the Lipschitz properties (3.3), one obtains
In z-coordinates, system (1.1) becomes (2.15), and the observer (3.1) llea (D)2 < (’r’@—?”q,:l)z cn(P)e 2|, (0)]?
becomes Tt
1—e %

2= Agf + BiLs(3) + Fs 7 Hs 7 (2)u+ K(y — C52).  (3.4) Tt IIPllvfp; (b:-+b%)  (3.16)
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©nP) = Mmax(P)/ Amin(P)) = Omax(P7H)/Amin(P7H), Definition 3.6: Let(2 be a setidR". Given a positive, the set;
1Pl = Amax(P) = (1/Amin(P™"))). This concludes the proof, is defined as
since formula (3.2) is easily obtained with

B = Yo Yy=tVON(P),  p2 =51V [|Pll/(20). (3.17)
: : - Definition 3.7: (BIBS stability) A system (1.1) is said to t@BS
. e a b n H
Remark 3.2: Theorem 3.1 states that for GULDO systems under a§taPleif for any positivew, two compact set9)” € €% C IR" exist
sumption®® (ALG nonlinearities), if the input is smaller than a suit-Such thatifz(0) € Q* andu(t)|| < @, thenx(t) € Q°, vt > 0. m
able bound, an observer galti can be found that ensures exponen- An observer that ensures convergence to zero of the observation

tial decay of observation error at a desired ratbelow a bound that €T0r when the state is confined in a bo_undedfs’éts called here a
depends on the constarits andb. If the stronger assumptiok’ semiglobal observeThe semiglobal versions of Theorem 3.1 follows.
(Lipschitz nonlinearities) is made in Theorem 8t = b = 0), the Theorem 3.8: Assume that system (1.1) is BIBS stable and take a

. — Aa b e e .
stronger result of exponential convergence of the observation errofigle (@: 2, £27). Assume that a positiveexists such that the system

zero is obtained. m is uniformly Lipschitz drift-observable if2?, and propertyH° holds

H ‘Ob H T n
Remark 3.3: Note that the conditions for existence of an exponentidl ®s(€2;). Then, for anya > 0, a gain matrixk’ € IR" "¢ for the
observer given in Theorem 3do notinclude observability for any OPserver (3.1) and positive constants ji2 andur exist such that if
input but onlydrift-observability It is the boundu s imposed on the lu()| < uar, ¥t > 0, 2(0) € Q* and
input that excludes the presence of inputs that make some system states — o
3 b= pab (b = J02 + b%) (3.22)

Qs 2 {z eR"| ||z -y < 6.Vy € Q. (3.21)

indistinguishable. m H0) [le(0) = 2(O)] < T
As it can be seen in the proof of Theorem 3.1, the boundon the
input needed for the convergence of the observer depends on the dBRD. provided that > 15D, it follows
stantsy; and+4 of the system, and the final bound on the observa- ) N — N
tion errér depeﬁds on the constahtsandb. The following theorem () = 2@l < e l2(0) = 2(0)[ + b ¥t 2 0.
shows that if system (1.1) is such that the vector observation relative (3.23)
degreg is greater than the multi-indéxhat characterizes the méxg,
then forany given boundu s on the input and foeny desired decay
ratea, an observer gaifi™ can be found that guarantees convergendi the Lipschitz constant @' in ®5(23). Let -, by, andyzr, by
of the observation error beloany desired asymptotic bound (conver-be the constants of the ALG functiofis (=) andH (=) in ®(€23).
gence to zero in the case of assumpﬂﬁh)_ The mapz = (I’;(.I') is a coordinate transformation mg for both
Theorem 3.4: Assume that system (1.1) is GULDO with vector obSystem (1.1) and observer (3.1). Their expressiorsdnordinates are
servation relative degree > 5. Moreover, assume that propefty’ ~ given by (2.15) and (3.4), and the error dynamics are governed by (3.5),
holds inIR"-and that the input is bounded by a constant (||« (t)|| <  Wherev, andv, defined in (3.6) are such thatt, 2 € P(<2)

Proof: Let~s_ be the Lipschitz constant dfs in 0% andvyg -1

unm, V& > 0). _ llvr (= ;)”2 < 2_”6 ||2+b2_

Then, for any positiver andb an« > @&, a gain matrixk’ € IR"*¢ A, < . 75 o
for the observer (3.1), and a strictly positive constaeiist such that llv2(z, D" <Aglle:ll” + b (3.24)
lla(t) = #(6)]] < pe™"[|x(0) = #(0)|| + b Consider now inequality (2.17) for a given positiveand with~* =

Vz(0).2(0) € R". (3.18) ~%+~2. Thanksto Theorem 2.7, a positive; exists such that setting
Proof: Consider thefl... Riccati-like inequality (2.17) in which # = @2 the inequality admits a stabilizing solution plt, ). Now,
p = uyr andy? = A2 442 Recall thatifF > 3, then for any: > 0 setuys = min(uas, W), use the gaink in the observer, and follow
4Vs L TH* - d > . . .
a > 0 exists such that inequality (2.17) admits a stabilizing solutioffl¢ Same lines of the proof of Theorem 3.1. Use maifisolution

pair such thal P|| /a < = (Theorem 2.10). Therefore, an> @ and of (2.17) to define the positive definite function = ¢! P~'e. of
a solution pairl K P)Exist such that - the observation errar. (3.8). The time derivative of along the error

_2 trajectory satisfies the inequality
1Pl 2b

— <. 3.19 . - . - NT
a T2 (402 (3.19) (z,2) <elP 1((.4;.— KC5)P+ P(As — KC5)"
The same steps made in the proof of Theorem 3.1 can be followed +BsBY +ul Fs 7Pl v+ qr’sz) Ple.

and inequality (3.2) can be obtained, in whigh and > are given
by (3.17). As a consequence, with the choice madexfand for the
solution pair( K, P), itis

+ b3+ b3 (3.25)

as long as: and 2 are in®3(£2%). From this and from (2.17), the fol-

el [|P|| 2 2 7 lowing inequality can be derived:
b%+b°ﬁ_qr¢;11/?-,/bz_+b%§b (3.20)

. - 2 2 2 b
and, therefore, setting = ¢; in (3.2) inequality (3.18) is obtainedand (% %) < —20w(e:) + by +by, forz 2 e @:(Q5).  (3.26)
the theorem is proven. [ |

Now, it is important to prove that(¢) and2(¢) remain in®=(Q%) for
Remark 3.5: As in the case of Theorem 3.1, if assumptitt is b P (t) (¢) (%)

all't > 0. From the BIBS assumption and bein)) € 2, and for all

made instead ¢f°, exponential convergence to zero of the observatiop> 0 lu(t)]| < urs < @ thenz(t) € Q°. A fortiori, z(t) € 2% and
error is obtained. u ;(;) € @g(Qﬂ forall ¢ > 0. Now, choosg:, = Yo Vg-1/CN(P)

B. Semiglobal Observer andyuz = 7y4-1/||P||/(2a). Note thatu, > 1, so that from as-

Semiglobal results on state observation can be obtained if for systeamption (3.22), alsa(0) € Qf andz(0) € ®5(Q2%). It remains to
(1.1) the ULDO property and hypothesk8 (or H') hold in subsets show thati(t) € Q2 V¢t > 0 (and, hencei(t) € &(22)). This is
of IR™, together with a bounded-input bounded-state (BIBS) stabilitpade by proving that a finite exit timi for & from the set?? does
property. not exist. For, let an exit tim& < oo exist. By definition,ts is such
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that@(ts) € 9%, andi(t) € Q2\IQL fort € [0,t5). From (3.26),
the following inequality is obtained far € [0, 5]

lle=(O)II* <cen(P)e™**|le~(0)||”

+ (1 _ cf2a't) %

(b +0%). (3.27)

From this, inequality (3.23) is readily proven foe [0, 5]. It remains

to prove that a finite exit timés does not exist. Thanks to assumption
(3.22), inequality (3.23) im € (0, ts] implies||e.(t)|| < 6, and since
x(ts) € Q°, itfollows thati:(ts) € Q8\9Q%. This contradicts the fact

thatts is a finite exit time and, therefore, (3.23) holds foréalr 0. m

The semiglobal version of Theorem 3.4 is presented below. The
proof is obtained following the same steps of Theorem 3.4 and

Theorem 3.8 and is not reported for brevity.

Theorem 3.9: Assume that system (1.1) is BIBS stable and take a
triple (7, Q°, Q). Assume that a positivéexists such that the system [10]

is ULDO in 9% and that the vector observation relative degfeis
7 > 5in Q2. Moreover, assume that propeft§f holds in®=(2}) and
that the input is bounded by a constant (||u(t)|| < war, V& > 0).

Then, for anyn > 0, a gain matrixk’ € IR" *¢ for the observer (3.1)

and positive constanis;, 2 exist such that ifc(0) € 2“ and

o N § — pab —
#(0): [l2(0) — 2(0)] < T’” (b: S+ z%) (3.28)
then, provided that > u»b, inequality (3.23) follows. ]

Remark 3.10:Also for Theorem 3.9, if the assumption of ALG [16]

nonlinearities is relaxed to Lipschitz nonlinearities (assumptioris

made instead o), convergence to zero of the observation error is[17]

obtained (the constantis zero in the theorem statement). [ ]
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the observer behavior through computer simulation. In the case when

the needed ALG (or Lipschitz) constants are knowncan be found
by solving theH ., Riccati-like inequality. Note that in the semiglobal

observer, the size of the region of convergence depends also on the

condition number of matri¥’, and, therefore, it is advisable to choose,

among the solution pairds’, ), one with a small cqP).
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