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MRE numerical algorithm and its steady-state solution under partic-
ular conditions. A full explanation of this trend is difficult, because of
the complexity of the data association process built in the MSPDA al-
gorithm, but one explanation would be that processing the best sensor
last improves tracking performance of the sensor system as a whole.
Analyses over ranges of sensor parameters show that tracking system
performance of the sequential MSJPDA filter, in terms of the rms po-
sition error, favors using sensors of comparable qualities, and that pro-
cessing the worse sensor first gives better results if the sensor qualities
do not differ by a large amount.
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Design of State Observers from a Drift-Observability
Property

Manuela Dalla Mora, Alfredo Germani, and Costanzo Manes

Abstract—In this paper, the problem of state observation with exponen-
tial error decay for nonlinear systems affine in the input is considered and
an observer is proposed. For such an observer, the drift-observability prop-
erty of the system (i.e., observability for zero input), together with an as-
sumption on the input amplitude or on the observation relative degree, are
sufficient conditions for exponential convergence of the observation error.
The existence of an exponential observer is correlated to the existence of a
solution for an Riccati-like inequality. Global and semiglobal conver-
gence results are presented.

Index Terms—Nonlinear observers, nonlinear systems, observability.

I. INTRODUCTION

Most recentcontributions in thefieldofstateobservation fornonlinear
systemscanberoughlyclassified intotwocategories. Inone, thegeomet-
rical properties of the vector fields defining the system are exploited and

Manuscript received September 1, 1999; revised October 1, 1999. Recom-
mended by Associate Editor, G. Bastin.

The authors are with the Dipartimento di Ingegneria Elettrica, Università
degli studi dell’Aquila, Monteluco di Roio, L’Aquila, Italy (e-mail: ger-
mani@ing.univaq.it; manes@ing.univaq.it).

Publisher Item Identifier S 0018-9286(00)04230-6.

the powerful tools of differential geometry are extensively used [1], [2],
[7], [10], [14]–[16], [19], [20], [23]. In the other category of works, the
state observation problem is studied considering functional parameters
of nonlinear systems, such as norms, gains and Lipschitz constants [9],
[17], [21], [25]–[28].Mostworksofbothcategoriesprovideasolutionof
the state observation problem only forclassesof systems.

Among the works of the first category, the papers [1], [13], [16], [19],
and [20] consider the class of nonlinear systems in which the nonlin-
earity is given by an output injection (conditionally linear systems). For
such systems, a complete observation theory is available, which also in-
cludes adaptive observers. In [8], [10], a characterization of the class of
systems observable for any input is given, and for these, an exponential
observer is provided. Stronger hypotheses are required for the construc-
tion of observers for the class of systems considered in [14], [15] that
admit linear error dynamics. In [23], [24], a high-gain observer of the
type presented in [6] is used inside a control loop. This kind of observer,
like the one introduced in [26], requires the explicit computation of the
state as a function of the input and output derivatives. When the con-
trol loop is closed, the input derivatives are available while the output
derivatives must be estimated. The paper [23] also considers observers
for nonlinear systems that have a particular block-triangular structure,
also including the class of uniformly observable systems [8], [10]. In
[2], the observation problem is solved for nonlinear systems with full
relative degree. Reference [9] considers observers for the class of bi-
linear systems, with linear dissipative drift.

Most of the works of the second category consider linear observable
systems with nonlinear perturbation terms characterized by a Lipschitz
constant and/or by a finite bound on the norm. In [21], [27], nonlinear
systems in which the output is a linear function of the state are consid-
ered. In [27], for such a class, the existence of an exponential observer
is implied by the existence of a solution for a Lyapunov-like inequality
involving the Jacobian of the drift term. In [21], a linear part can be
extracted from the drift and the existence of the observer is implied by
the existence of a solution for an algebraic Riccati equation. In [28],
the result of [27] is extended to a larger class of output functions. In
[17], an observer is presented for the class of systems with linear and
stable drift, and nonlinearity only in the forcing term.

All of the above-mentioned papers restrict the analysis to classes of
nonlinear systems, characterized by geometrical properties or by the
particular structure of the dynamic equations. The aim of this paper
is to consider general nonlinear systems affine in the control and to
fully exploit the property ofdrift-observabilityfor the construction of
an observer that works for meaningful classes of input functions. The
nonlinear systems considered here have the form

_x(t) = f(x(t)) + g(x(t))u(t) (1.1a)

y(t) =h(x(t)) (1.1b)

wherex(t) 2 X � IRn; u(t) 2 U � IRp andy(t) 2 IRq: g(x) =
[g1(x); � � � ; gp(x)] is a matrix whose columns areCk(X) vector fields,
f(x) is aCk(X) vector field, and the vector functionh(x) is Ck(X)
too, wherek is an integer that allows all differentiations needed in the
paper.

II. PRELIMINARIES

Definition 2.1: A function �(x) is said to beaffine linear growth
(ALG) in a setS if positive constants
 andb exist such thatk�(x1)�
�(x2)k

2 � 
2kx1 � x2k
2 + b2; 8x1; x2 2 S:

Remark 2.2: It is clear that a function uniformly Lipschitz inS is
ALG in the same set, withb = 0: It can be readily proven also that
functions uniformly Hölder inS are ALG in the same set. Recall that

0018–9286/00$10.00 © 2000 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 8, AUGUST 2000 1537

�(x) is uniformly Hölder inS if a positiveh and a constant� 2 (0; 1)
exist such thatk�(x1)� �(x2)k � hkx1 � x2k

� ; 8x1; x2 2 S:
Recall that the Lie derivative of orderk (k nonnegative integer) of a

scalar function�(x) along a vector fieldf(x) is recursively defined as
follows:

L0f�(x)
�
= �(x);

Lk
f�(x)

�
=

@Lk�1
f �

@x
f(x); k = 1; 2; � � � (2.1)

For eachj = 1; � � � ; q; consider the vector function

�
s

j (x)
�
= [hj(x) Lfhj(x) � � � L

s �1

f hj(x)]
T: (2.2)

Let s = (s1; � � � ; sq) be a multi-index such that q

j=1 sj = n: Con-
sider the following square map

�s(x)
�
= [�s

1 (x)T � � � �
s
q (x)T]T: (2.3)

Denoting withYs the vector of output derivatives

Ys = [y1 � � � y
(s �1)
1 � � � yq � � � y

(s �1)
q ]T

(2.4)

if u(t) � 0; it is Ys(t) = �s(x(t)); and, therefore, invertibility of the
map�s and the knowledge of vectorYs allow exact state reconstruc-
tion. This property justifies the following definition.

Definition 2.3: A map�s(x) is said to be anobservability mapin
a set
 � IRn if it is a diffeomorphism in an open set that contains or
coincides with
: A system that admits an observability map in
 for
a givens is said to bedrift-observablein 
:

It follows that the Jacobian associated to an observability map

Qs(x)
�
=

@�s(x)

@x
(2.5)

is nonsingular in
; and the inverse map ofz = �s(x) exists in�s(
)
and is denoted asx = ��1

s
(z): Although, in general, such a map is

difficult to compute, its Jacobian can be easily computed as

@��1
s

(z)

@z
z=� (x)

= Q�1s (x): (2.6)

Definition 2.4: A system is said to beuniformly Lipschitz drift-ob-
servable(ULDO) in a set
 � IRn if it is drift-observable in
 and
the maps�s and��1

s
are uniformly Lipschitz in
 and�s(
); re-

spectively. If
 � IRn, the system is said to beglobally uniformly
Lipschitz drift-observable(GULDO).

In the state observation theory, it is useful to note theobservation
relative degree(a concept weaker thenrelative degree). The following
notation is needed

LgL
s
fhj(x)

�
= [Lg Ls

fhj(x) � � � Lg Ls
fhj(x)]: (2.7)

Definition 2.5: Theobservation relative degreerj of thejth output
of system (1.1) in a set
 � IRn is an integer such that

8x 2 
: LgL
s
fhj(x) = 0; s = 0; 1; � � � ; rj � 2

9x 2 
: LgL
r �1

f hj(x) 6= 0: (2.8)

The multi-indexr = (r1; � � � ; rq) is calledvector observation relative
degree.

The product ofQs(x) with the matrixg(x) has an interesting struc-
ture. Consider first the product

@�
s

j (x)

@x
g(x) = Lghj(x); � � � ; LgL

s �1

f hj(x)
T

: (2.9)

Note that the firstrj � 1 rows of matrix (2.9) are identically zero in

 (if sj < rj ; the product (2.9) is zero). Without loss of generality,
assume the observability map such thatsj � rj for the firstq outputs
andsj < rj for the remainingq � q; so that the last q

j=q+1 sj row
blocks of the productQs(x)g(x) are identically zero. On the contrary,
for the firstq row blocks, one has the following structure:

@�
s

j (x)

@x
g(x) =

0(r �1)�p
Hj(x)

; j = 1; � � � ; q: (2.10)

The matrixHj(x) is dj � p; with dj
�
= sj � rj + 1; and is defined as

Hj(x)
�
= LgL

r �1

f hj(x); � � � ; LgL
s �1

f hj(x)
T

: (2.11)

Defining the multi-index d
�
= (d1; � � � ; dq); and the integer

d
�
= q

j=1 dj ; an�d matrixFs; r of zeros and ones can be defined as

Fs; r =
diagqj=1fSjg

0~s�d
where Sj =

0(r �1)�d
Id

(2.12)

whereId denotes thedj � dj identity matrix and~s = q

j=q+1 sj :
Now, the productQs(x)g(x) can be definitively written as

Qs(x)g(x) = Fs; rHs; r(x); where

Hs; r(x)
�
= HT

1 (x); � � � ; HT
q (x) : (2.13)

Now, letLs(x)
�
= [Ls

f h1(x); � � � ; L
s

f hq(x)]
T: It is useful to define

the following vector and matrix functions, defined in�s(
):

Ls(z)
�
= Ls(�

�1
s (z)); Hs; r(z)

�
=Hs; r(�

�1
s (z)): (2.14)

It is easy to check through direct computation that a drift-observable
system (1.1) can be rewritten using the coordinate transformationz =
�s(x) as

_z =Asz +BsLs(z) + Fs; rHs; r(z)u

y =Csz (2.15)

where As; Bs; and Cs are block-diagonal matricesAs =
diagqj=1fAjg; Bs = diagqj=1fBjg; Cs = diagqj=1fCjg; in
which theq triples(Aj ; Bj ; Cj) are Brunowsky matrices

Aj =
0(s �1)�1 Is �1

0 01�(s �1)
; Bj =

0(s �1)�1
1

;

Cj = [1 01�(s �1)]: (2.16)

As it will be shown in Section III, the existence of an exponential ob-
server for system (1.1) is related with the existence of a solution for the
following H1 Riccati-like matrix inequality:

(As �KCs)P + P (As �KCs)
T +BsB

T
s

+ �2Fs; rF
T
s; r + 2�P + 
2P 2 � 0 (2.17)

where�; �; and
 are given positive real parts andK 2 IRn�q and
P 2 IRn�n are the unknown matrices.

Definition 2.6: A pair (K;P ) is said to be astabilizing solution
pair if it satisfies inequality (2.17), all eigenvalues ofAs �KCs have
negative real parts andP is symmetric positive definite.

The following theorems state some relationships between existence
of a stabilizing solution pair(K;P ) and the values assumed by the
triple (�; �; 
) of coefficients. The proofs are extensions of those in
[4] for the single-input/single-output (SISO) case. For further details,
see [3].

Theorem 2.7: For any� � 0 and
 � 0; a strictly positive� exists
such that for any� � �; theH1 Riccati-like matrix inequality (2.17)
admits a stabilizing solution pair(K;P ):

Theorem 2.8:For any� � 0 and� � 0; a positive
 exists such that
for any
 � 
; theH1 Riccati-like matrix inequality (2.17) admits a
stabilizing solution pair(K;P ):

Theorem 2.9: If s � r (componentwise), then for any positive triple
(�; �; 
); theH1 Riccati-like matrix inequality (2.17) admits a stabi-
lizing solution pair(K;P ):

Theorem 2.10:Consider theH1 Riccati-like matrix inequality
(2.17) with given positive� and
: If s � r; then for any" > 0 a
positive� to be put in (2.17) and a stabilizing solution pair(K;P )
exist such thatkPk=� � ":

Remark 2.11: In the proofs of all the theorems above, the pair
(K;P ) that solves (2.17) is provided (see [3], [4]). The structure ofK
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is chosen block-diagonal, so thatAs � KCs is in block-companion
form

K = diagqj=1fKjg; Kj = [kj;1 � � � kj; s ]T: (2.18)

Let Kj(�j) denote the vector gain that assigns eigenvalues
�j = (�j;1; � � � ; �j; s ) to the jth block Aj � KjCj : If the
eigenvalues of each block are distinct, this is diagonalized by a
Vandermonde matrix, denoted asV (�j); and, therefore, matrix
As � KCs is diagonalized by the block Vandermonde matrix
Vs(�)

�
= diagqj=1fV (�j)g; where� = (�1; � � � ; �q) is the set of

eigenvalues assigned toAs � KCs: Given a positive parameterw;
consider the set of eigenvalues�(w)

�
= (�1(w); � � � ; �q(w)); where

�j(w) = (�w; � � � ;�ws ): Let K(w) denote the gain matrix, with
structure (2.18), that assigns the set�(w) of eigenvalues to matrix
As �K(w)Cs; and letVs(w) denote the block-Vandermonde matrix
that diagonalizes matrixAs � K(w)Cs: In all proofs of Theorems
2.7, 2.8, 2.9, and 2.10, it is shown that the pair(K(w); P (w)); with
P (w) = (V T

s (w)Vs(w))
�1; solves theH1 Riccati-like inequality of

the theorems for a sufficiently large value of the parameterw:

III. EXPONENTIAL OBSERVER FORNONLINEAR SYSTEMS

In this section, it is proven that a dynamic system of the type

_̂x(t) = f(x̂(t))+g(x̂(t))u(t)+Q�1s (x̂(t))K(y(t)�h(x̂(t))) (3.1)

is an exponential observer for system (1.1), provided that some condi-
tions both on the system and on the inputu are satisfied and that the gain
matrixK is properly chosen. The basic assumption for the existence
of an exponential observer is the drift-observability of the system. The
rather technical assumption of Uniform Lipschitz Drift-Observability
(ULDO) is needed too, together with the following:

AssumptionH0: (ALG nonlinearities). The matrix functionsLs(z)
andHs; r(z) defined in (2.14) are ALG in a setS (see Definition 2.1).
Let 


L
; 


H
andb

L
; b

H
be the relevant constants.

All theorems in the following will be stated under the assumption
H0; that is quite general, but it does not give strong convergence results
for the observer. Stronger results on convergence are obtained if the
following assumption is made instead:

AssumptionH1: (Lipschitz nonlinearities). The matrix functions
Ls(z) andHs; r(z) defined in (2.14) are uniformly Lipschitz in a set
S: Let 


L
and


H
be the Lipschitz constants.

Being thatH1 is a particular case ofH0; in the following, all the-
orems will be stated only underH0: Global and semiglobal results on
state observation are presented.

A. Global Observer

Theorem 3.1:Assume that system (1.1) is GULDO and that the
propertyH0 holds inIRn: Then, for any� > 0, a gain matrixK 2
IRn�q for the observer (3.1) and strictly positive constants�1; �2 and
uM exist such that ifku(t)k � uM ; 8t � 0; then

kx(t)� x̂(t)k ��1e
��tkx(0)� x̂(0)k

+ �2 b2
L
+ b2

H
; 8x(0); x̂(0) 2 IRn: (3.2)

Proof: Consider the coordinate transformation given by the ob-
servability map,z = �s(x) andẑ = �s(x̂): For the observation errors
ex

�
= x � x̂ andez

�
= z � ẑ; in all IRn; it is

kezk � 
� kexk; kexk � 

�

kezk: (3.3)

In z-coordinates, system (1.1) becomes (2.15), and the observer (3.1)
becomes

_̂z = Asẑ +BsLs(ẑ) + Fs; rHs; r(ẑ)u+K(y � Csẑ): (3.4)

The dynamics of the observation error inz-coordinates is

_ez = (As �KCs)ez +Bsv1(z; ẑ) + Fs; rv2(z; ẑ)u; (3.5)

with

v1(z; ẑ)
�
= Ls(z)� Ls(ẑ);

v2(z; ẑ)
�
= Hs; r(z)�Hs; r(ẑ): (3.6)

Being ALG, the functionsLs(z) andHs; r(z) the perturbations are
such that8z; ẑ 2 IRn

kv1(z; ẑ)k
2 � 
2

L
kezk

2 + b2
L
;

kv2(z; ẑ)k
2 � 
2

H
kezk

2 + b2
H
: (3.7)

Consider now theH1 Riccati-like inequality (2.17) with prescribed�
and
2 = 
2

L
+ 
2

H
: From Theorem 2.7, a positive� exists such that

the inequality admits a stabilizing solution pair(K;P ): Take such� as
the bound on the input function,i.e., setuM

�
= �; and takeK as the

observer gain in (3.1). Use the symmetric positive definite matrixP to
define the following positive definite function of the errorez

�(ez) = eTz P
�1ez: (3.8)

The derivative of� along the error trajectory is

_�(z; ẑ) = eTz (P
�1(As �KCs) + (As �KCs)

TP�1)ez

+ 2eTz P
�1Bsv1(z; ẑ) + 2eTz P

�1Fs;rv2(z; ẑ)u: (3.9)

The following inequality that holds any pair of vectorsa andb and for
any real�

2aTb � �2kak2 +
1

�2
kbk2: (3.10)

allows to write the inequality

_� � eTz P�1(As �KCs) + (As �KCs)
TP�1 ez

+ eTz P
�1BsB

T

s P
�1ez + kv1k

2

+ u2MeTz P
�1Fs; rF

T

s; rP
�1ez +

kv2 uk
2

u2M
: (3.11)

Taking into account (3.7), and noting thatkv2uk2=u2M � kv2k
2; it is

_�(z; ẑ) � eTz P
�1 (As �KCs)P + P (As �KCs)

T

+BsB
T

s + u2MFs; rF
T

s; r + 
2P 2 P�1ez

+ b2
L
+ b2

H
: (3.12)

Exploiting inequality (2.17), satisfied by the current pair(K;P ); it
follows

_� ��2�eTz P
�1ez + b2

L
+ b2

H

=�2�� + b2
L
+ b2

H
(3.13)

�(ez(t)) � e�2�t�(ez(0)) +
1� e�2�t

2�
(b2
L
+ b2

H
) (3.14)

kez(t)k
2 �

�max(P
�1)

�min(P�1)
e�2�tkez(0)k

2

+
1� e�2�t

2�
�

b2
L
+ b2

H

�min(P�1)
: (3.15)

(�max(�) and�min(�) denote the max and min eigenvalue of a matrix).
From the Lipschitz properties (3.3), one obtains

kex(t)k
2 � (
� 


�
)2 cn(P )e�2�tkex(0)k

2

+
1� e�2�t

2�
kPk
2

�
(b2
L
+ b2

H
) (3.16)
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(cn(P ) = (�max(P )=�min(P )) = (�max(P
�1)=�min(P

�1));
kPk = �max(P ) = (1=�min(P

�1))): This concludes the proof,
since formula (3.2) is easily obtained with

�1 = 
� 

�

cn(P ); �2 = 

�

kPk=(2�): (3.17)

Remark 3.2: Theorem 3.1 states that for GULDO systems under as-
sumptionH0 (ALG nonlinearities), if the input is smaller than a suit-
able bound, an observer gainK can be found that ensures exponen-
tial decay of observation error at a desired rate� below a bound that
depends on the constantsb

L
andb

H
: If the stronger assumptionH1

(Lipschitz nonlinearities) is made in Theorem 3.1(b
L
= b

H
= 0); the

stronger result of exponential convergence of the observation error to
zero is obtained.

Remark 3.3: Note that the conditions for existence of an exponential
observer given in Theorem 3.1do not include observability for any
input but onlydrift-observability. It is the bounduM imposed on the
input that excludes the presence of inputs that make some system states
indistinguishable.

As it can be seen in the proof of Theorem 3.1, the bounduM on the
input needed for the convergence of the observer depends on the con-
stants


L
and


H
of the system, and the final bound on the observa-

tion error depends on the constantsb
L

andb
H
: The following theorem

shows that if system (1.1) is such that the vector observation relative
degreer is greater than the multi-indexs that characterizes the map�s;
then foranygiven bounduM on the input and foranydesired decay
rate�; an observer gainK can be found that guarantees convergence
of the observation error belowanydesired asymptotic bound (conver-
gence to zero in the case of assumptionH1):

Theorem 3.4:Assume that system (1.1) is GULDO with vector ob-
servation relative degreer � s: Moreover, assume that propertyH0

holds inIRn-and that the input is bounded by a constantuM (ku(t)k �
uM ; 8t � 0):

Then, for any positive� andb an� � �; a gain matrixK 2 IRn�q

for the observer (3.1), and a strictly positive constant� exist such that

kx(t)� x̂(t)k � �e��tkx(0)� x̂(0)k+ b

8x(0); x̂(0) 2 IRn: (3.18)

Proof: Consider theH1 Riccati-like inequality (2.17) in which
� = uM and
2 = 
2

L
+ 
2

H
: Recall that ifr � s; then for any" > 0;

� > 0 exists such that inequality (2.17) admits a stabilizing solution
pair such thatkPk=� � " (Theorem 2.10). Therefore, an� � � and
a solution pair(K;P ) exist such that

kPk

�
�

2b
2


2
�

(b2
L
+ b2

H
)
: (3.19)

The same steps made in the proof of Theorem 3.1 can be followed
and inequality (3.2) can be obtained, in which�1 and�2 are given
by (3.17). As a consequence, with the choice made for� and for the
solution pair(K;P ); it is

�2 b2
L
+ b2

H
= 


�

kPk

2�
� b2

L
+ b2

H
� b (3.20)

and, therefore, setting� = �1 in (3.2) inequality (3.18) is obtained and
the theorem is proven.

Remark 3.5: As in the case of Theorem 3.1, if assumptionH1 is
made instead ofH0; exponential convergence to zero of the observation
error is obtained.

B. Semiglobal Observer

Semiglobal results on state observation can be obtained if for system
(1.1) the ULDO property and hypothesesH0 (orH1) hold in subsets
of IRn; together with a bounded-input bounded-state (BIBS) stability
property.

Definition 3.6: Let
 be a set inIRn: Given a positive�; the set
�

is defined as


�
�
= fx 2 IRnj kx� yk � �; 8y 2 
g: (3.21)

Definition 3.7: (BIBS stability) A system (1.1) is said to beBIBS
stableif for any positiveu; two compact sets
a � 
b � IRn exist
such that ifx(0) 2 
a andku(t)k � u; thenx(t) 2 
b; 8t � 0:

An observer that ensures convergence to zero of the observation
error when the state is confined in a bounded set
b is called here a
semiglobal observer. The semiglobal versions of Theorem 3.1 follows.

Theorem 3.8:Assume that system (1.1) is BIBS stable and take a
triple (u;
a; 
b): Assume that a positive� exists such that the system
is uniformly Lipschitz drift-observable in
b

�; and propertyH0 holds
in �s(


b
�): Then, for any� > 0; a gain matrixK 2 IRn�q for the

observer (3.1) and positive constants�1; �2 anduM exist such that if
ku(t)k � uM ; 8t � 0; x(0) 2 
a and

x̂(0): kx(0)� x̂(0)k �
� � �2b

�1
; b = b2

L
+ b2

H
(3.22)

then, provided that� > �2b; it follows

kx(t)� x̂(t)k � �1e
��tkx(0)� x̂(0)k+ �2b 8t � 0:

(3.23)

Proof: Let 
� be the Lipschitz constant of�s in 
b
� and


�

be the Lipschitz constant of��1
s

in �s(

b
�): Let 


L
; b

L
; and


H
; b

H

be the constants of the ALG functionsLs(z) andHs; r(z) in �s(

b
�):

The mapz = �s(x) is a coordinate transformation in
b
� for both

system (1.1) and observer (3.1). Their expressions inz-coordinates are
given by (2.15) and (3.4), and the error dynamics are governed by (3.5),
wherev1 andv2 defined in (3.6) are such that8z; ẑ 2 �s(


b
�)

kv1(z; ẑ)k
2 � 
2

L
kezk

2 + b2
L

kv2(z; ẑ)k
2 � 
2

H
kezk

2 + b2
H
: (3.24)

Consider now inequality (2.17) for a given positive� and with
2 =

2
L
+
2

H
: Thanks to Theorem 2.7, a positive~uM exists such that setting

� = ~uM the inequality admits a stabilizing solution pair(K;P ): Now,
setuM = min(~uM ; u); use the gainK in the observer, and follow
the same lines of the proof of Theorem 3.1. Use matrixP solution
of (2.17) to define the positive definite function� = eTz P

�1ez of
the observation errorez (3.8). The time derivative of� along the error
trajectory satisfies the inequality

_�(z; ẑ) � eTz P
�1 (As �KCs)P + P (As �KCs)

T

+BsB
T

s + u2MFs; rF
T

s; r + 
2P 2 P�1ez

+ b2
L
+ b2

H
(3.25)

as long asz andẑ are in�s(

b
�): From this and from (2.17), the fol-

lowing inequality can be derived:

_�(z; ẑ) � �2��(ez) + b2
L
+ b2

H
; for z; ẑ 2 �s(


b
�): (3.26)

Now, it is important to prove thatz(t) andẑ(t) remain in�s(

b
�) for

all t � 0: From the BIBS assumption and beingx(0) 2 
a and for all
t � 0 ku(t)k � uM � u; thenx(t) 2 
b: A fortiori, x(t) 2 
b

� and
z(t) 2 �s(


b
�) for all t � 0: Now, choose�1 = 
� 


�
cn(P )

and�2 = 

�

kPk=(2�): Note that�1 > 1; so that from as-

sumption (3.22), alsôx(0) 2 
a
� and ẑ(0) 2 �s(


b
�): It remains to

show thatx̂(t) 2 
b
� 8t � 0 (and, hence,̂z(t) 2 �s(


b
�)): This is

made by proving that a finite exit timet� for x̂ from the set
b
� does

not exist. For, let an exit timet� < 1 exist. By definition,t� is such
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that x̂(t�) 2 @
b
�; andx̂(t) 2 
b

�n@

b
� for t 2 [0; t�): From (3.26),

the following inequality is obtained fort 2 [0; t�]

kez(t)k
2 � cn(P )e�2�tkez(0)k

2

+ 1� e
�2�t kPk

2�
b
2

L
+ b

2

H
: (3.27)

From this, inequality (3.23) is readily proven fort 2 [0; t�]: It remains
to prove that a finite exit timet� does not exist. Thanks to assumption
(3.22), inequality (3.23) int 2 (0; t� ] implieskex(t)k < �; and since
x(t�) 2 
b; it follows thatx̂(t�) 2 
b

�n@

b
�: This contradicts the fact

thatt� is a finite exit time and, therefore, (3.23) holds for allt � 0:
The semiglobal version of Theorem 3.4 is presented below. The

proof is obtained following the same steps of Theorem 3.4 and
Theorem 3.8 and is not reported for brevity.

Theorem 3.9:Assume that system (1.1) is BIBS stable and take a
triple (u; 
a; 
b): Assume that a positive� exists such that the system
is ULDO in 
b

� and that the vector observation relative degreer is
r � s in 
b

� : Moreover, assume that propertyH0 holds in�s(

b
�) and

that the input is bounded by a constantuM (ku(t)k � uM ; 8t � 0):
Then, for any� > 0; a gain matrixK 2 IRn�q for the observer (3.1)
and positive constants�1; �2 exist such that ifx(0) 2 
a and

x̂(0): kx(0)� x̂(0)k �
� � �2b

�1
b = b2

L
+ b2

H
(3.28)

then, provided that� > �2b; inequality (3.23) follows.
Remark 3.10:Also for Theorem 3.9, if the assumption of ALG

nonlinearities is relaxed to Lipschitz nonlinearities (assumptionH1 is
made instead ofH0), convergence to zero of the observation error is
obtained (the constantb is zero in the theorem statement).

IV. COMMENTS ON THEOBSERVERIMPLEMENTABILITY

The observer presented in this paper applies to a quite general class
of nonlinear systems (drift-observable nonlinear systems with ALG or
Lipschitz nonlinearities and with a suitably bounded input). The com-
putation of matrixQs(x̂) in the observer (3.1) is straightforward: it
requires repeated Lie derivatives and can be automatically performed
by symbolic manipulators of equations. The choice of the gain matrix
K is less direct:K should be a solution of theH1 Riccati-like in-
equality (2.17), in which the knowledge of the constants of the ALG
(or Lipschitz) functionsLs(z) andHs; r(z) is required. On the other
hand, in practical applications, the computation of such constants is
not an easy task. However, the proofs of the theorems of existence of
solutions pairs for theH1 Riccati-like inequality provide a strategy
for the choice of the gainK: As pointed out in Remark 2.11, solutions
of the inequality can be found adopting the choice(K(w); P (w)) by
choosing a sufficiently large parameterw: This fact classifies the pro-
posed observer as ahigh-gain observer. In practical applications, the
tuning of the parameterw in the gainK(w) can be made by evaluating
the observer behavior through computer simulation. In the case when
the needed ALG (or Lipschitz) constants are known,K can be found
by solving theH1 Riccati-like inequality. Note that in the semiglobal
observer, the size of the region of convergence depends also on the
condition number of matrixP; and, therefore, it is advisable to choose,
among the solution pairs(K;P ); one with a small cn(P ):
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