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A Luenberger-like observer for nonlinear systems

G. CICCARELLAT, M. DALLA MORATY and A. GERMANIY

A state observer is proposed for nonlinear continuous time systems which
extends the well known Luenberger observer. In particular, on the basis of
simple assumptions on the regularity of the system equations {cbservability and
the global Hélder condition for suitable functions}, which are generaily
satisfied for physically meaningful dynamic systcms, the global asymptetic
convergence of the estimated state towards the frue state is shown. Finally,
some examples of applications are also reported showing the effectiveness of
the proposed observer.

1. Introduction

The design of state estimators is one of the essential points in control theory
whose solution, in the linear case, is the well known Luenberger’s cbserver
(1971).

A first systematic contribution to the theory of observers for nonhnear
systems was a set of conditions under which the dynamics of the observation
error is linear (Krener and Isidori 1983, Krener and Respondek 1985, Xia and
Gao 1989). Unfortunately the necessary and sufficient conditions for this type of
observer to exist are rather restrictive, as in the dual problem of feedback
linearization.

A nice contribution to the extension of the Luenberger observer for
nonlinear systems by a linearization technique has been given by Zeitz (1987).
The algorithm proposed by Zeitz, which also uses time derivatives of the input,
is easy to implement, but it does not in general guarantec the convergence of
the observer.

A different approach based on ‘high-gain’ approximate cancellation of the
nonlinearity has been presented by Tornambe (1989). However this approach

- does not puarantee, with arbitrarity high but finite gain, the asymptotic
‘.- convergence of the estimated state to the true state. It is easy to demonstrate
that, even if the initial state for the observer coincides with that of the system,
the error could be in general only bounded and there is no guarantee that it
-converges asymptotically to zero.

Marino (1990} presented an adaptive observer for single-input single-output
“honlinear systems that can be transformed to a certain observable canonical
_‘.form and Bastin and Gevers (1988) gave necessary and sufficient conditions for
-4 system to be transformed into this canonical form. This observer requires a
tansformation which is often difficult to find and conditions given by Bastin and
IEvers are restrictive from an application point of view. The proposed adaptive
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observer does not require the complete knowledge of the system model, but, on
the other hand, it guarantees only an asymptotically finite error.

Tsinias (1990) presented an observer which guarantees the convergence to
zero of the error. This paper provides a nice Lyapunov-like sufficient condition
for the existence of a nonlinear observer. However, as sometimes is the case in
similar situations, the actual comstruction of this Lyapunov function may be
difficult.

To our knowledge, the most complete and satisfactery contribution to the
theory of nonlinear observers has been recently provided by Gauthier et al.
(1992). In this paper the authors show that, in suitable coordinates, the state of
a nonlinear system can be globally asymptotically tracked by means of an
observer whose ‘gain’ is determined via the solution of an appropriate Lyapu-
nov-like equation. This approach essentially requires the existence of globally
defined and globally lipschitzian change of coordinates — ‘uniform obsery-
ability’. If the system is ‘uniformly observable for any input’, then a globally
convergent observer is found for a nonlinear system with inputs. An alternative
proof of the main results given by Gauthier et al. (1992) has also been recently
provided by Tsinias {1991).

In this paper, we present new contributions to the theory of nonlinear
observers, that improve a number of the existing results summarized above. In
particular:

(a) the construction of the observer proposed in this paper does not require
a preliminary nonlinear change of coordinates;
(b) the calculation of the ‘gain’ is very straightforward;

(¢) the observer convergence can be proved under very general conditions,
which are in general satisfied for physically meaningful dynamic systems;
(d) it can be extended to multiple-input—multiple-output nonlinear systems;

(e) it is computationally simple and easily implementable.

Moreover the proposed observer, as the Luenberger-one, reproduces exactly
the system equation when initialized by the true initial state.
Consider the single-input-single-output nonlinear system:

i(n) = flx(0) + gle(Du(); x(0) = xq (1.1)
y(@) = h{x(1)) (1.2)

with state x(t) e R”, & a C” real-valued function and f, g€ C™ real-valued
vector fields. The class 7 of real-valued inputs is constituted by uniformly
bounded functions, i.e. U = {u: |u(t) = M, Vit = 0}.

For the following we need to recall the definition of the Lie derivative L A
of the C* function A(x) with respect to the C” vector field ¢ (see Isidori, 1989):

" BAGY)

L) = (V). w0 = 2 T ) (1:3)

where V stands for the grandient operator. Moreover the symbols Lf}/l(x) means
the k-times repeated iteration of L,A(x):

LEMx) = L(p(Lf;*I/l(x))(x)}
LY Ax) = Mx)

(1.4)
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In what follows, we also denote by Q(x) the so-called observability matrix of
(1.1), {1.2) (see Isidori 1989):

h(x)
Q(x):% Lf!?(x) :%Cl (1.5)
LE h(x)

In the linear case, i.e. A{x) = Cx and f(x) = Ax, the matrix (1.5) reduces to
the well known observability matrix.

Moreover by thetsymbol v and 8 we mean the Holder constants associated
with QQ, i.e.

Q) = Q) = vg Ix = ¥|°

with 6 €(0,1}. Of course the case 6 =1 corresponds to the usual Lipschitz
condition. Finally, for a bounded set I'e R” we let radius (I denate the
guantity:

radius (I') = sup x|l
xe

2. The observer for nonlinear systems

This section presents the equation for the observer for single-input—single-
output continuous time nonlinear systems by considering first the case of systems
without input and with scalar output. The case of systems with input will be
presented in § 3.

In order to prove the main result of this section we need to state the
following lemmas.

Lemma 1:  Let V(1) be the Vandermonde marrix

ARt
V(L) = : : :
At oAt L1
then for any « >0 and ¢ >0 there exist A, < A1 < ... <A <0 such that the
following equation is satisfied:
MV IDe= -« (2.1)

Proof: Let
y=FAQ =4+ VW c+a
| and observe that there exist A’ and A" such that
Y F(V) >0
(i) F(") <0
“For (i) it is enough to observe that V(1) becomes singular when |1, — A= 0,
L# ], s0 that [V YA — + oo,

On the other hand (ii) can be obtained by noting that, choosing for example
i:~W,1*12 .., 1, we have:

m [V Y—w, —w?, ..., —wh)| =1 (2.2)

W0
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which implies lim,, .. F(1) = —o, so that, by a classical continuity argument,
there exists at least a finite solution of F () =0, O
Lemma2: Ler m(r) be a non-negative scalar function such that for &€ (0,1),
>0
¢
m(t) < e m(0) + nJ;el(’“’)[m(r)]é dr (2.3)

then

1/(1-6)
} (2.4)

m(t) < m((})[emﬁﬂ + % m(0)P=D (=0 qy
Proof: Let r(¢) be the solution of the following integral equation:
i
r(t) = eMr(0) + ?]Joel(f“’)[r(t)]a dr

it is easy to verify that

n 1/(1-8}
?‘(t) — F(O) [e.l(lgri)r + I r(o)(ﬁ—l}(el(l—(‘i)t _ 1)}

now, by using a generalized version of the Gronwall inequality (Lakshmikan-
tham et al. 1989}, it follows that if m(0) < r(0), then m(¢) =< r(r), for all ¢ = 0,
which proves (2.4). O

Remark 1: Note that when 68— 1, (2.4) becomes the well known Gronwall
irequality:

m(1) < e (0) (2.5)
which can easily be derived directly from (2.3). [

Theorem 1:  Let Q(x) be the observability matrix associated with the pair (f(x),
h(x)) in (1.1), (1.2). Assuwme u(t) =0, for all 1 = 0, if:

(H1) Q(x) has full rank for all x e R"

(H2) LER(¢p (L)) is uniformly Helder, i.e. forall &, & e R”:
L3R ED) — LER(GTHEN] = v |2, - &)
with 0 € (0, 1]

then there exists a finite gain vector K € R" such that the solution of the following
system equations:

2(1) = fEE) + [QEO] K[p(t) - h(f(x))}}
¥0)y =% eR"

(2.6)

has the following properties:
(i) for de(0,1),

lim [2(2) = x(n)] < ¢

for any e >0, for all #(0)e R".
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(i) for 6=1
lim [[£(¢) ~ x(O] =0, ¥ £(0) e R"

Proof: Let us define the following nonlinear transformation:

h(x)

z=o@) = M o (2.7)

L hix)

which admits the inverse because of the implicit function theorem and H1:
x = @) (2.8)
In the new coordinate system the state equations (1.1) and (1.2) become:

2(t) = Az(t) + BLIh(d7 (z(1))) 2.9)
v(t) = Cz(1) {2.10)

where A (nXn), B (nXx1) and C (1 xn) are given by the Brunowsky
canonical form (1970):

01 0 0 o
00 1 ... 0 o
A=l PiB=|L|; c=01 0 ... q
00 0 ... 1 :
00 0 ... o]

In the same way, defining 7(r) = P(£(t)) the equation (2.6) for the observer
assumes the form:

21y = AZ(1) + BLIR[®1(2()] + K [y(1) — C2(1)]
= (A ~ KCY2(r) + BLER[@ I (E(1))] + Ky(t) (2.11)
2(0) = o(%)

Now we study the properties of the estimation error &(t) in the transformed
state

§(1) = 2(1) — 2(1)
By (2.9) and (2.11) we can write

§(6) = (A = KOE®) + B [LIM@™HE(0)) = L@ Hz(O)] (2.12)

The companion matrix (4 — KC) can be diagonalized by the Vandermonde

'Egtransformation
ATY oAt
Vi) = : : :
ARTL oAt

Where A =T[4, ..., /An] is the vector of the eigenvalues of (A ~ KC), that, due
' the observability property of (A, (), can be assigned with K.
Moreover, for the sake of simplicity, we can assume the A; to be real and
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Aw <A1 < ...< A <0. Then
eA=RON = V(e V(2) (2.13)

where A = diag[d; ... 4,].
From {2,12) we have:

V{RER) = eMV(DED)
+ [ MV B LT G0 - Lik@ @(m)]ar 2.14)

Taking the norm, observing that |[V(1) B|= \/n, and, considering H2, we
have

IVED] = [VED|
+ AN VO IV @EDI de (2.15)

By Lemma 2 we obtain
flV(A)E(r)|J = |[V(REO)] {e’w(]é)f
L Ny

Ay
With reference to case (i) the asymptotic error is

Vi ylVl(ﬂ)lf‘s)”““”

|4

1/(1-8)
VI [V A)EO) @ (e — 1)} (2.16)

i V0200 = |

which implies

1 118
im ) = [ YO I

By Lemma 1 this asymptotic upper bound for the error can be chosen
arbitrarity small. Invoking the continuity of @', the thesis is proved.
With reference to case (ii), by the Remark 1 to Lemma 2 we obtain:

IV ()& =< e VBN |y yeoy)

= e " [VIHEO)] (2.17)
which, by continuity of @', implies the thesis as A, ..., A, can be chosen
according to Lemma 1. -‘- O

Remark 2: Note that when § =1 the convergence of Z(¢) to z(r) has already
been proved by Gauthier et al. (1992). They used a gain K that depends only
on one parameter and is determined via the solution of a Lyapunov-like
equation. In our proof, the possibility of choosing A, ..., 4, provides a greater
number of degrees of freedom. This allows in principle the optimization of the
behaviour of the observer by a suitable choice of the eigenvalues for any
physical application. Moreover, the case <1 is also covered. To conclude, we
would like to stress that also in the case of simple systems the nonlinear term
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L}h(¢7(z)), which is used in the observer equations given by Gauthier et af.
(1992), is in general very difficult to compute. (]

Remark 3: Note also that when @' is uniformly Lipschitz then in case (i) the
convergence of X to x is exponential. In fact, let y4-1 be the Lipschitz constant
associated with @~ '; we then have

B0 = x()] = |27 (2(10) = &7 (D] < vorr [2() — 2(1)]]
< vtV I VDED = vtV D) eIV (1) EO)]

O
Remark 4:  We would like to observe that when & > 1 (the case of ‘low gain’),
the quantity L7h(P!(z)) is independent of z and therefore any choice of
0>4 > ... >4, guarantees the local convergence of ®(1) to x(¢). Then for
‘small” eigenvalues, small gain K can be used, When & = 1 (the case of ‘finite
gain’} H2 becomes the uniform Lipschitz condition and the convergence to zero
of the error is guaranteed for any choice of £(0) if the finite gain K is suitably
chosen in order to satisfy the condition

A NV yllv iR < 0

Finally, when 6 € (0,1} (the case of ‘high gain’), the asymptotic error is
smaller than a positive constant which can be made as small as desired by taking

|K || sufficiently high. O
Remark 5: For the practical computation of K it is enough to choose
Real {4;} < — vy, forall i=1, 2, ..., n and to compute the coefficients of the
polynomial

A= A)A=A) . (A= A) = A" + KA"L + KA 4+ K,
Then K ={X; K, ... K,]". 7

The hypotheses H1 and H2 arc considerably weakened when it is known a
priori that the evolution of the system state x(7) is confined to a bounded closed
sphere S5(p) of a given radius p, around the origin in [R”.

In this case we have the following result,

Corollary I:  The estimation error for the observer (2.6) converges exponentially
to zero if

(i LiR(D™Y(E)) is locally Lipschitz;
(i) x(r) € 8(p), for all t =0,

(ii)) Q(x) has full rank for all x €S (radius {D~YS(Nr +)Y) for an
arbitrarily fixed N > 1 and r is such that | ®(x)| < r, for all x € S(p);

(iv) [£(0) = x(0)]| = y, for a suitable > 0.

Proof: It is sufficient to observe that H1 and H2 are verified in the bounded
set S (radius { @ {S(Nr + r))}), because if a function is locally Lipschitz then it
1s uniformly Lipschitz in any compact set, and to show that

() — x(1) € S (radius (D (S(Nr + )}, V=0
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Without loss of generality, it is possible to choose
A=y, 007"
in such a way that |V "1(A)} =< N, with the fixed N > 1 and that
LW+ VD Vey=—-a (2.18)

is satisfied. ‘
In fact, for any choice of ) < 0 choosing A= 4 — &', £ > 0 we have

lim [V ()] = =
g0

lim V@) =1

so that there exists £y ; > 0 such that
1= ”V‘I(/’]L)H = N, Ve > EN,;_1 (219)

Moreover, for such a choice of the A, a continuous function
mihy, &) = [V ()] is well defined. This function is such that for all
Be(l,N],38> ey, m(d, &) = B such that (2.18) can be satisfied by choosing

any
—de(a+Vay, a+ VayN]

and & such that
m(h, &) = (—a ~ M)/ V ny

As x(2) € S(p) it follows that D(x(¢)) C S(r) for a suitable choice of r
according to the hypothesis (iii).
Let us now define the set U,(r) C R"

Up(r) = {Ee R™: V() &f = 7}
and observe that from (2.19), denoting

Ap = [minimum eigenvalue VT(A)V(1)]1?

we have;
1
— = =
NS A =1 (2.20)
In fact *
2o S VTRVED
o xelR? JCTX
: 1 (2.21)
_ ' _ = 21
YV TR VTHAYy v
max — -
¥ y°y

which implies (2.20).
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Up(r) = {&IVDE| = r)
= {&EVIHV) &= )
C{Ee R™ AZ|EP = rty
C {Ee R™ &= Nr} = S(Nr) (2.22)
From (2.22) and (2.17}, if E(0) € U,(r) then E(r) € U,{r), i.e.
E(t)y e S(Nr) Vr=0

Consequently z(¢) and Z(r) belong to S(Nr + r), which guarahtees the
existence of the Lipschitz constant y on the bounded set S(Nr + r) and £(¢),
x(t) € § (radius {@ ' (S(Nr + r)}).

Moreover £(0) € U,;(r) means

VN P(R(0)) = e(x ()] =
which is implied by

(@) — o) < W

and then, by continuity, there exists (r/[|V(1)l]) such that £0) e U,(r) if

l2©) ~ x(0)] < v (W) 0

Remark 6: This case has also been considered by Gauthier et al. (1992) by
defining, in our terminology, a function ¢(z) which corresponds to L?h(@“l(z))
in the domain of the state evolution S(p) and any fixed uniformly Lipschitz
function outside S{p). This does not allow a simple description of the observer
in the original state, while our result does. O

3. The observer for the forced system

In this section, we consider systems described by the equations (1.1), (1.2)
where the input is assumed to be uniformly bounded. The observer for this class
of systems can be defined by using geometrical or metrical properties for the
vector fields which define the system. The following theorem shows the
convergence of an observer derived from (2.6) for the class of systems having
relative degree equal to n.

Theorem 2:  Ler Q(x) be the observability matrix associated with the pair (f(x),
h{(x)) of functions in (1.1), (1.2). Assume u(t) € U, for all t 20, and the triple
(f(x), g(x), A(x)) has relative degree n (see Isidori 1989) if

(H1) Q(x) has full rank for all x € R™; and
(H2)
sup {|LFA(¢ () + uLeL} h($7HED) = Li(¢ ™ (£))

flecfl<
— uL L (e (Gl = v4llE — Gofl®
with §e(0,1], v, e R”
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then there exists a finite gain vector K e R" such that ihe solution of the following
System equations:

2(0) = fE0) + gEOlr) + [QERUNITK [y(r) — h(2()]  (3.1)
) =x
has the following properties:
(i} for 6€(0,1)
lim []6(1) - x(0)] = & (32)
for any >0, for all £(0) € R"; and
(i) for 6 =1
lim [£(2) — ()| =0 ¥ £(0) e R”

Proof: Using the same nonlinear transformation (2.7), (2.8) we can write

(1) = (A = KC)z(1) + BILFR(¢™ (2(1) + LeL} " h(¢™ (2 (r))u()]

+ Ky(1) (3.3)
2(1) = (A = KO)2(1) + B[LIh(¢ ™ (2(0)) + L L ' h(o7 (Z(O)u(n)]
+ Ky(1) (3.4)

The error as in Theorem 1 is

IV(DEn| =

- Vin _ _ 3 -0

[VREON {070 + = = 7 VDI IV @EO) D eht — 1)
(3.5
Then the theorem is proved following the same method as for Theorem 1. J

Also in this case we can state the analogous of Corollary 1.

Corollary 2:  The estimation ervor for the observer (3.1) converges exponentially
to zero if
(i) Lia(¢p™HE)) and L,LF (¢~ N(E)) are locally Lipschitz;
(i) there exists a closed bounded sphere S(p) of radius p such that
x(t)e S(p), Yue U

(iii) Q(x) has full rank for all x € S (radius TP~ (S(Nr + N} where N > 1
is an arbitrarily fixed constant and r is such that |®(x)|<r, for all
x € §(p); and

(iv) [IB(0) — x(O)|| < v, for a suitable 1> 0.

Proof: The proof is exactly as in Corollary 1, observing that also the Lipschitz
property for LgL?ﬂh(qb'l(C)) is guaranteed in § (radius {® " 1(S(Nr + r))}). O

For nonlinear systems which do not have relative degree n, it is still possible
to prove the asymptotic convergence of the proposed observer.
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In this case, we need the hypothesis that the class of admissible inputs U is
given by piecewise polynomial functions of order » almost everywhere in 1, i.c.
ue UM it

d"u(s)

= w () =0, ae fors=0
ld

Note that such a class is dense in the set of continuous functions, it contains
spline functions and therefore it is not really a constraint for physical applica-
.. tions. _
For the next theorem we need the following definitions. Leét
m{ky=min(k -3, r—1)

D=[u® «W@y w0
Pi(x, D} = h(x)
%(x, D) = Lf+guh(x)

m(k)

d ‘
'lf,’k(x, D) = Lf+gu1j!k_1(x, D) + %E;-("l)— 1}'};(_1()6, D) u(l+1)
i=

P(x, D) = [yi(x, D) yulx, D) ... yu(x, D)T
and, when it exists, we will denote by @ '({, D) the solution in x of the
equation
B(x, D) =¢

Now we can state the following theorem.
Theorem 3:  Assume u(t) € UV forall ¢t = 0. If

(H1) Q(x, DY=d®(x, D)/dx has full rank for all x ¢ R*, for all D ¢ R™!
and

(H2) v, (P~HE, D), D) is uniformly Holder, i.c. there exists Se(0,1]
such that
|

then, denoting by A a Brunowsky matrix of dimension r + 1, there exist finite
gain vectors K, and K, such that the following system equations for the
estimation of D and x:

&

(wERY

¥r(P7HE, D), DY = 9,0(@7HE, D), D)| <y H{f -

D (1) = 4D(0) + Ko(u(t) = Dy(1)
. . 7 fint —1
£ = 70 + G0 + (“PED) k) - aeo)

B (dtf)(;?, D))"l do(x, 1)
ds dD

Ks[u(t) = Dy(0)] (3.6)
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have the following properties:
(i) for 6 (0, 1),
lim [[£(2) — x(0)| < ¢
f—o0

forany £>0, for all (0) ¢ R"; and
(i) for 6=1
lim () — x() =0 V¥ £(0) ¢ R”
f—c0

Proof: Let us rewrite the system of equations (1.1), (1.2) in the form
(1) = flx(1) + g(x(N D1 (1)
Dy(ty = Dy(1)

: r (3.7)
Dr(r) = Dr+1
‘ Dr+1(t) = 0, a.e., ]
t) = h(x(1))
y{1) = A( 5.8
u(t) = Dy(1)
and let us define
X
w=| Dy (3.9)
Dr+1
fx) + g(x)Dy
Dy
Flw) = :
Dr+l
0
H{w) = h(x)
so that (3.7) and (3.8) can be rewritten
w = F(w)
(3.10)
y = H(w)
Moreover let us define the following nonlinear transfer motion:
H(w) "]
LpH(w)
(W n;l
[?.1.] = O(w) = [1()] _| LFTH(wW) 3.10)
Z3 @z(W) """""""""
M'fnJrl
L. Whtr+1 .

O (w) e R"; Oy(w) e R7HL
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so that (3.7) and (3.8) become

20 = [ ----- } 2(1) + [ﬁ] LEH(67(2(0)

y)=Ciz=010...0]z
w(t)=Cz=1[0...010...0]z

n times
with A, and A, Brunowsky matrices of dimension n and r + 1 respectively and
B as in Theorem 1. Moreover it is easily noted that

LEH(OHz(0) = Panafd7 (21 22), 22)
and that the couple

is observable. Then defining W as [% D, ... D,.1]" the same nonlinear
transformation (3.11) gives:

4]

, A - K G |0 B
‘f::(t) Sl E ------------------ E(t) T+ [wn+1(¢_1(21: 22)7 2\2)
0 ;:Ag - K,C,

+
1
e
=i o
S S
1
==

— Y (97 (21, 22)s 22)]

following the same line as in Theorem 1, denoting by

[vl(x) boo ]
V(R) = |- E—
0 {Vad)

"+ with Vi{4) the Vandermonde matrices associate with A; — K;C;, i=1,2, we
-.obtain, as in Theorem 1,

Vs = [VREO] o
+ [NV V@I Y WEDI dr (12)

§:_Q that the same results as in Theorem 1 are achieved. O

i
i
£
}
i

e S
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Remark 7: In Theorem 3 the restrictive hypothesis H1 is adopted for the sake
of simplicity. Actually what is necessary is just that the system equation (3.6) for
the observer admits a unique solution such that

dg(x, D) ]
de  law.pey
has full rank. ]

Also in this case the hypotheses H1 and H2 can be considerably weakened
when the evolution of the system state x({t) is confined in a bounded closed
sphere S(p,), around the origin in R”* for any input u ¢ U, with

U, = {u e UM 2 uP(nf = pﬁ}
=0
‘We can state the following result.

Corollary 3:  The estimation error for the observer (3.6) converges exponentially
to zero if:
(1) Yas1 (@, D), D) is locally Lipschitz with respect to (&, D)T
(i) x(2) € S(py), forall t =0
(i) u(tye U,, forall t =0
(iv) Q(x, D} has full rank for all (x, D)" ¢ § (radius { @ Y(S(Nr + r)}) for
an arbitrarily fixed N >1 and r is such that |[®(x, D|<r, for all
xeSlp,), foral ue U,

(v) |£(0) — x(O)| = B, for a suitable B> 0.

Proof: The proof, with slight modifications, proceeds along the same lines as
Corollary 1, with references to the system equations (3.10). O

4. Examples of applications and concluding remarks

(a) Predator-prey Volterra model with predator measurements. This
example satisfies the condition of Corollary 1, as the existence has been proved
of a bounded invariant set for the evolution of the state which depends only on
the initial conditions.

The system equations are as follows:

i‘l = —dX; + bxlxz

.fz = Xy — dxle

A Yy =%
The observer equations are as follows;
£ = —af) + bRi%a + kyly — £y)
" " ~ a — bfz)kl + kz ~
Xy = cfy — di%y + ( (y e xl)

by
In Fig. 1, an application example is reported in whicha=b=c=d =1.

(b) Here we show an application example that is readily recognized to satisfy
the corollary of Theorem 2. A simple one-link robot arm is considered whose
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rotary motion about one end is controlled by means of an elastically coupled
actuator (see Isidori 1989, pp. 230-231).

The system is described by means of two second-order differential equations,
one characterizing the mechanical balance of the actuator shaft, and the other
characterizing the mechanical balance of the link:

H g1
T+ Fidg, + — -2l =T
1491 141 N (fh N)

Jods + Fags + H

g1
q; — N) + mgdcosg, =0

where ¢; denote the angular positions with respect to a fixed reference frame of,
respectively, the actuator shaft and the link; J; represent inertia; F; are viscous
friction constants; H is the elasticity constant of the spring; N is the transmis-
sion gear ratio; T is the torque produced at the actuator axis; s is the mass;
and d is the position of the centre of gravity of the link. Then, choosing
x = [9192 41G2]", we obtain the system

x3(1)
x4(1)
F
R R OB RRORE L0
}“3; x1(f) — % xa(t) - n}id cos xo(1f) — ]—22 x4(t)

u(t)

y(x (1)) = h(x(1)) = x2(2)
The observer equations are as follows:

o NF, Ni; .
S X9 k1 + “? kg + *_'I‘_‘I_ k3 (y - XQ)

H
— X3+ —u

+—— —
W INTTT 7

+ {m —% (24 mgdcos£5)ky

Ndgm sin X, NF, NI, .
+ N - H k2 + H k3 + H k4 (y - xz)
_ H H mgd " Fa o N
= 1N £ 7, £, 7, COS X 7 4+ kaly — X9)
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system evolution

Figure 1. Predator-Prey Volterra’s model with predator measurements,

In Fig. 2 an application example in which, for the sake of simplicity, all the
constants are set equal to one is reported. The nput is u(r) = 2 + sin (1).

(¢) The following example satisfies the conditions of Corollary 3. Given a
d.c. motor (Isidori 1989, pp. 226-230) with constant rotor voltage and stator
voltage as control variable, the system obtained has the equations

dr,
Ls E;_ + RSIS =V,

dr

JES—2~!~F.Q=T
dr

Li—+Rl1,=V,~E

where I, is the stator current; V', is the stator voltage; R, is the stator
resistance; L is the stator winding inductance; I, is the rotor current; V, is the
rotor voltage (constant by assumption); R, is the rotor winding resistance; L, is
the rotor winding inductance; E is the back’e.m.f.; Q is the angular velocity of
the motor shaft; J is the inertia of the load; F is the viscous friction constant; T
is the torque developed at the shaft; and @ is the flux associated with stator
winding.
The coupling between the three equations is expressed by the relations

E=K &0
T=K,®I,
&= L],
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15 firfst varial:ale 15 sec!nnd varia}ble

A =2 }.2 = 2.1 i, =-22 i, =-23

Figure 2. One link robot arm.

In the ideal hypothesis of 100% energy conversion efficiency:
K.=Kp=K
Choosing the state variables
x1=1; xp=1, x3=20

and u == V_ we obtain the functions

R
"L
R Ve L
flx) = L X2 L. L. X1X3
F L,
—7x3+K7x1x2
1
L
glx)y =| ™
0
Y

hx)= Q- Q@ =x3 - Q°

553

W_here €° is a fixed reference value. We have chosen the input to belong to the
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class of piecewise constant functions; in this case,

W
®(X5D)= h
Y3
x; — £0
F L K
_ —7x3+ X1X2
R, F RN\LK K Ve Ly K LIK? F?
—(LSJr—J- Lr)Tx1x2+7Dx2+L,Tx]— JL. x1x3+1—2x3

In Figs. 3 and 4, application examples are reported for different input signals.
In these examples
R R, V.

— =2 = 50; — = 20000;
LS Ll‘ Ll’ Ll‘

8

=150; KL, =18

Ly =120, §= 025, J=1
As concluding remarks we would like to stress that the proposed observer is
easy to implement and that gives good results in practical applications. A
possible improvement of this observer could be made by a suitable choice of the
eigenvalues in order to minimize a given quality functional, which for example
could take into account the precision of the output measurements,

1.2 First v::iriahle

25@

Input=200+5@»sin(t)

200

158
b

160 Second ?ariahle 209 Third v:ariahle

158

104
g

Figure 3. DC motor (case 1).
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250 InputZZBB*SﬁTsign(sin(t)) 1.2 First v}ariahle

B L ] ................... 4
150 i
] ] ia
v 100 Secand Yariahle 208 Third vfariahle

15@

100 i
)

(L) ]

18

Figure 4. DC motor (case 2).
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