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Some examples of data

Growth of children
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Some examples of data

Pharmacokinetics of Indomethacin
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Some examples of data

Pharmacokinetics of Theophylline
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The classical regression model

For one subject

yi=Ff(x,B8)+¢ , 1<j<n

yj € R is the jth observation of the subject,

n is the number of observations
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The classical regression model

For one subject

yi=Ff(x,B8)+¢ , 1<j<n

yj € R is the jth observation of the subject,

n is the number of observations

The regression variables, or design variables, (x;) are known,
The vector of parameters (3) is unknown.

The measurement error variables (&) are unknown.



The classical regression model

The (&) are modelized as sequences of random variables.

The goal of the modeler is to develop simultaneously two kinds of
models:

(1) The structural model
(2) The statistical model



The classical regression model

(1) The structural model 7: We are not interested with a purely
descriptive model which nicely fits the data, but rather with a
mechanistic model which has some biological meaning and
which is a function of some physiological parameters.

Examples:
m compartimental PK models,
m viral dynamic models,
...



The classical regression model

(2) The statistical model aims to explain the variability observed
in the data:
m the residual error model: distribution of (¢;)
m the model of covariates



The classical regression model

yi=f(x,6)+¢e , 1<j<n

Some statistical issues:

m Estimation:
m estimate the parameters of the model
m Model selection and model assessment:

m Select and assess the “best” structural model f,
m Select and assess the "best” statistical model

= Optimization of the design :
m Find the optimal design (x;)



Some pharmacokinetics-pharmacodynamics examples




Pharmacokinetics and Pharmacodynamics (PK/PD)

dose — — concentration — — response

m Pharmacokinetics (PK): “What the body does to the drug”
m Pharmacodynamics (PD): “What the drug does to the body”



One compartment PK model
intravenous administration

One Compartment Madel

i)

Before After
Administration Administration




intravenous administration and first-order elimination

dose D (t=0) — | DRUG AMOUNT Q(t) | — elimination (rate k)

dQ

() = —kQ(t) : QO)=D
Q(t) = De

C(t) : concentration of the drug,
V : volume of the compartment



intravenous administration and nonlinear elimination

dose D (t=0) — | DRUG AMOUNT Q(t) | — nonlinear elimination

d(t) _  VmQ(t)
dt Vs Kn+ Q(t)

(Vim, Km) : Michaelis-Menten elimination parameters,
V : volume of the compartment.



oral administration, first-order absorbtion and elimination

dose D at time t=0

absorption (rate k;) —| DRUG AMOUNT Q(t) |— elimination (rate k)

dQ, | B
dt (t) = _kaQa(t) ; Qa(O) =D
Cci/_ct) t) kaQa(t) — keQ(t) ; Q(0)=0

Qa(t): amount at absorption site.

Q(t) ka —ket —Kat
=" =PV k) (et —et)




Two compartments PK model

intravenous administration

Two Compartment Model

Imimediately After
Adrninistration

Before Administration

After Distribution
Equilibriunm



Two compartments PK model

40, .\ _
%) = ko),

Q.

Dt = KQult) ~ keQelt) ~ kaQu(t) + kn@ylt).
@,

20 = haQe(t) — kaa Qul).

Qa(t): amount at absorption site, Q,(0) = D.
Qc(t): amount in the central compartment, Q.(0) = 0.

Qp(t): amount in the peripheral compartment, Q,(0) = 0.



Outline

Estimation in classical regression models
m linear regression model
m non linear regression model

m examples
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The regression model

yi = f(x,B8)+¢ , 1<j<n

n is the number of observations.
The regression variables, or design variables, (x;) are known,
The vector of parameters (3 is unknown.

- linear model: f is a linear function of the parameters 3
- non linear model: f is a non linear function of the parameters 3



The regression model

The statistical model

yi = f(x,0)+¢;

The simplest statistical model assumes that the (¢;) are
independent and identically distributed (i.i.d) Gaussian random
variables:

gj ~iid N(0,0%)

Problem: estimate the parameters of the model § = (3, 72).



Maximum Likelihood Estimation

m Maximum likelihood estimation (MLE) is a popular statistical
method used for fitting a statistical model to data, and
providing estimates for the model's parameters.

m For a fixed set of data and underlying probability model,
maximum likelihood picks the values of the model parameters
that make the data "more likely" than any other values of the
parameters would make them



Maximum Likelihood Estimation

Consider a family of continuous probability distributions
parameterized by an unknown parameter 0, associated with a
known probability density function py.

Draw a vector y = (y1,¥2, ..., yn) from this distribution, and then
using py compute the probability density associated with the
observed data,

po(y) = po(y1,y2,-- -, ¥n)

As a function of 6 with y1,y»,...,y, fixed, this is the likelihood
function
L(0:y) = po(y)



Maximum Likelihood Estimation

Let 6* be the “true value” of 4.

The method of maximum likelihood estimates 8* by finding the
value of 6 that maximizes £(6;y).

This is the maximum likelihood estimator (MLE) of 6:

0 = Arg max L(0;y)



Maximum Likelihood Estimation
Some properties of the MLE

Under certain (fairly weak) regularity conditions, the MLE is
"asymptotically optimal":

m The MLE is asymptotically unbiased: E(f) — 6*

n—oo
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n—oo

m The MLE is a consistant estimate of #* (LLN): § — 6*
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Maximum Likelihood Estimation
Some properties of the MLE

Under certain (fairly weak) regularity conditions, the MLE is
"asymptotically optimal":

m The MLE is asymptotically unbiased: E(f) — 6*

n—oo

m The MLE is a consistant estimate of #* (LLN): § — 6*

n—oo

m The MLE is asymptotically normal (CLT)
V(0 —6) — N(0.Z(6)7Y)
n—oo

Z(0%) = —Eag log L£(6*; y)/n is the Fisher Information Matrix

m The MLE is asymptotically efficient, (Cramér-Rao)
This means that no asymptotically unbiased estimator has lower
asymptotic mean squared error than the MLE.



The regression model
Maximum likelihood estimation

yj = f(x,0)+¢e , 1<j<n
g ~iid N(0,0%)

yj ~ N (f(x,5),07)

£oy) = 11£0:)=]1ro(x)
j=1 o
= ﬁ (271‘02)_% e_ﬁ(yj_f(xjﬂ))z

= (271'02)7% e_ﬁ (i —f(x,8))2



The regression model
Maximum likelihood estimation

3 = Arg max L(5;y)

= Argmax { (27r02) =3 efﬁ }1:1(}’1'*"()976))2}
B

= Arg mﬂin Z(yj - f(ijg))2

j=1

(Maximum Likelihood estimate of 3 = Least-Square estimate of [3)



The linear regression model

yi = xuf1+xef+...+xi1p8p +e1
yo = xo101+x0202+ ...+ XxpBp + 2
Yn = Xpff1+ X202+ ...+ an,Bp +én

Y=XB+e




The linear regression model
Maximum Likelihood Estimation

y = XfB+e
g N(O,Uz)
0 = (8,0%)

y NN(XﬁaUZIn)
L(0;y) = (27r02)_g e 2,2 ly X8I

3= Arg max L(5; y) = Argmin [ly — X B>



The linear regression model
Maximum Likelihood Estimation

y = XpB+e

B = Arg min |y — X5
= (X'X)"'X'y

(X' X)IX(XB +€)

B+ (X'X)1X'e

B

= o2(X'X)7!

@

Var(



The linear regression model
Maximum Likelihood Estimation

y = XpB+e

B = Argmﬁinny—xmﬁ

= (X'X)"'X'y
= (X'X)IX'(XB +¢)
= B+ (X'X)"IXe
EB) =
Var(B) = o?(X'X)?
—log £(0*;y) = flog(zmz)+i2uy—><ﬁu2

I(5) = —ERlogL(S0%y) = —5(X'X)



The linear regression model
Maximum Likelihood Estimation

y = XpB+e

Let V = Var(3) = 02(X’X)~! be the variance-covariance matrix of /3.

The diagonal elements of V are the variances of the components of 3:

m V) k is the variance of B
m \/Vix is the standard error (s.e.) of f

m 90% confidence interval for (3y:

[ — 1.645\/ Vi B + 1.645\/Vjc 4]



The non linear regression model

yi = f(xufi, xi202,. .., x1p0p) + €1
Y2 = f(X21617 X2262a o 7X2pﬂp) + &2
Yn = f(anﬂl, Xm22, . .. 7anﬂp) +én

Y =1F(X,B)+e




The non linear regression model
Maximum Likelihood Estimation

Yy~ N(f(Xv ﬂ),0'2/,7)
L(0;y) = (2770.2)_5 e—ﬁ”y—f(xﬂ)”z

3= Arg max L(fy) = Argmin [ly — (X, 3)|1?

= No explicit expression for 3, use of optimization algorithm
(Newton-Raphson)



Model selection

Compute the likelihood of the different models
m Let O be the maximum likelihood estimate of 6 for model M:

Oan = Argmax La(0;y)

m Let Lo = Lr(Oaq;y) be the likelihood of model M.

Selecting the “most likely” models by comparing the likelihoods
favor models of high dimension (with many parameters)!

Penalize the models of high dimension
Select the model M that minimizes the penalized criteria

—2L A + pen(M)

Bayesian Information Criteria (BIC) : pen(M) = log(n) x dim(M).
Akaike Information Criteria (AIC) : pen(M) = 2dim x (M).



Linear regression model

Growth of children

height

woow W m
N

130

120

yj = B1+ tjB2 +¢j

B =97.97, [ =359




Subject 1

Non linear regression model
Pharmacokinetic of Indomethacin

Subject 2

yj = Pre b + Bze Pl ¢

Subject 51 B Bz P
1 203 178 0.19 0.17
2

283 223 050 0.19




Outline

The mixed effects model
m linear mixed effects model
m non linear mixed effects model

m examples



Some examples of data
Pharmacokinetics of Theophyllinee

concentration
6
!

time
Each individual curve is described by the same parametric model,
with its own individual parameters



Analysis of data from several subjects

Classical regression model for one subject

‘yj:f(Xj,l/))—Fq , 1§j§n‘
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vi=f(xj, ) +ej , 1<i<N , 1<j<n
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Analysis of data from several subjects

Classical regression model for one subject

‘yj:f(Xj,l/))—FEJ' , 1§j§n‘

Classical regression model for several subjects

vi=f(xj, ) +ej , 1<i<N , 1<j<n

yij € R is the jth observation of subject /,
N is the number of subjects
n; is the number of observations of subject /.

xjj are the regression variables, or design variables



The mixed effects model

[Pinheiro and Bates, 2002]

yU:f(Xij,i/}i)+8ij AN, 1<) <n;

yij € Ris the jth observation of subject i,

N is the number of subjects

n; is the number of observations of subject /.

The regression variables, or design variables, (x;;) are known,

The individual parameters (1);) are unknown.



The mixed effects model

YU:f(XU’¢i)+5U , 1<i<N ) 1<<n;

The (v;) and the (g/;) are modelized as sequences of random
variables.

The goal of the modeler is to develop simultaneously two kinds of
models:

(1) The structural model
(2) The statistical model



The mixed effects model

yU:f(XU,¢;)+€ij ,1<i<N , 1<j<n;

(2) The statistical model aims to explain the variability observed
in the data:
m the residual error model: distribution of (&)
m the model of the individual parameters: distribution of (1;)

| i = h(Ci, B,m)

C; is a vector of covariates
[ is a vector of fixed effects
n; is a vector of random effects




The individual parameters

‘ Y= h(Ci,ﬁﬂh')‘




The individual parameters

examples:

‘ Y= h(Ci,ﬁﬂh')‘

m additive random effects (C; = 1)

Yi = [+



The individual parameters

’ Vi = h(GCi, B, ;i)

examples:

m additive random effects (C; = 1)
Vi =[+ni
m effect of a covariate (8 = [51, f2], Ci = [1,sexi])

Vi = [+ Basex; + n;



The individual parameters

’ Vi = h(GCi, B, ;i)

examples:

m additive random effects (C; = 1)
Vi =0+
m effect of a covariate (8 = [51, f2], Ci = [1,sexi])
Vi = P1+ Posex; + n;i
m multiplicative random effects

Yi=pe"



The individual parameters

’ Vi = h(GCi, B, ;i)

examples:

m additive random effects (C; = 1)
Vi =0+
m effect of a covariate (8 = [51, f2], Ci = [1,sexi])
Vi = P1+ Posex; + n;i
m multiplicative random effects
Yi=pe"

m "partial" vector of random effects

Y = (Yi, ¥i2) = (b1 + ni1, 52)



The mixed effects model

Yii = f(Xanl)_Felj alélSN ) 1§J§nl
vi = h(G,B,m)
C; is a known vector of covariates

(3 is a unknown p-vector of fixed effects
n; is a unknown g-vector of random effects

Eij ~ N(O,Uz)
pi o~ N(OvQ)

Q is the g x g variance-covariance matrix of the random effects

(Hyper or population) parameters: 6 = (3,Q, 02)




The mixed effects model
Example

Classical regression model

yj = Pr+ P2tj +¢j

Mixed effects model

Yi = i+ dietj+ej
= (B +ni1) + (B2 +ni2)tj + €

where n; = (ni1,7i2)" ~ N(0,) means

() ((6) (5 %))



The mixed effects model

Some statistical issues:

m Estimation:
m estimate the population parameters of the model 6
m estimate the individual parameters
m compute confidence intervals

m Model selection and model assessment:
m Determine if a parameter varies in the population
m Select the best combination of covariates
m Compare several treatments

= Optimization of the design :

m Determine the design (the measurement times) that yields the
most accurate estimation of the model



The mixed effects model
Estimation of the population parameters

The maximum likelihood estimator of § = (3, Q, 0?) maximizes

L(Oy) = Li(0;yi)

=

1

Li(6;yi) = p(yi, ni; 0)dn;

—— T

p(yilni; 0)p(ni; 0)dn;



The mixed effects model
Estimation of the population parameters

The maximum likelihood estimator of § = (3, Q, 0?) maximizes

We know that

L(0;y)

Li(0;yi)

yilni ~
ni o~

I
=

Li(0;yi)
1

p(yi,ni; 0)dn;

p(yilni; 0)p(ni; 0)dn;

I
—— T

N (F(xi, h(Ci, B.1i)), 0 )
N(0,Q)



The mixed effects model
Estimation of the population parameters

Thus

L0y = /(zmz)—";ezi2|y;f(x;,h(ci,ﬁ,n;))||2x

(2r|Q)) "z 2 iy,




The mixed effects model
Estimation of the population parameters

Thus
L0y = /(zmz)—";ezi2|y;f(x;,h(ci,ﬁ,n;))||2x

(2r|Q)) "z 2 iy,

Example: ¢¥; = B+ n;

Li0;y) = C/U—nilQ’—ée—zw:lz|y,'—f(Xi,dJi)llz—;(wi—ﬂ)'ﬂ_l(d)i—ﬁ)dwi



The mixed effects model
Estimation of the individual parameters

Assume that 6 = (3,0, 02) is known (or previously estimated) ©);
maximizes the conditional distribution p(1);|y;; 6)

p(¥i, yi; 0)
p(yi : 0)
p(yili; 0)p(i; 0)
p(yi : 0)
o pyilvi; 0)p(vi; 0)

p(Yilyi; 0) =




The mixed effects model
Estimation of the individual parameters

Assume that 6 = (3,0, 02) is known (or previously estimated) ©);
maximizes the conditional distribution p(1);|y;; 6)

p(¥i, yi; 0)
p(yi : 0)
p(yilei; 0)p(vi; 6)
p(yi : 0)
o pyilvi; 0)p(vi; 0)

p(Yilyi; 0) =

Example: ¥; = B+ n;
p(ilyi; 0) = Ce 3 lyi=f (i wn)lP =5 (wi=B)' 2 (vi—B)

1); minimizes a penalized least-square criteria:

G = angmin (1 £, 0P = 5001~ Y (05~ )



The linear mixed effects model
Maximum likelihood estimate

yi = Xivi+e;
g~ N(0,0%,)
vi o~ N(B,Q)
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The linear mixed effects model
Maximum likelihood estimate

yi = Xivi+e;
g~ N(0,0%,)
vi o~ N(B,Q)

We have y; = X; 8 + Xjn; + ¢; thus by linearity
yi ~ N(XiB, XiQX! + 0?1,
Set V; = X;QX!/o? + I,,, thus the likelihood is explicit

N
£(0:y) = [J@rlo?Vi)) "2 exp (—2%2()/; = XiB) Vi My — Xﬂ))
i=1



The linear mixed effects model
Maximum likelihood estimate

yi = Xivi+e;
g~ N(0,0%,)
vi o~ N(B,Q)

We have y; = X; 8 + Xjn; + ¢; thus by linearity
yi ~ N(XiB, XiQX! + 0?1,
Set V; = X,-QX,-’/U2 + Ip,, thus the likelihood is explicit
N
£(0;y) = [J(2rlo?Vil) "2 exp (—T;(yi = XiB) Vi My — Xﬁ))
i=1

Computation of the MLE # via an optimization routine
(Newton-Raphson iterations or EM algorithm)



The linear mixed effects model
Profiled likelihood

Optimization much simpler using concentrated or profiled
likelihood, ie likelihood as a function of Q



The linear mixed effects model
Profiled likelihood

Optimization much simpler using concentrated or profiled
likelihood, ie likelihood as a function of Q

From

yi ~ N(XiB,0%V))

one can deduce




The linear mixed effects model
Profiled likelihood

Using these expressions, derive the profiled log-likelihood £(Q; y) as
a function of Q:

L(Qy) = L(5(Q),Q,8%(Q):y)

Estimator of Q is obtained by maximizing £(%; y)

A

Q=arg mgx/:(Q; y)



The linear mixed effects model
Profiled likelihood

Using these expressions, derive the profiled log-likelihood £(Q; y) as

a function of Q:
L(Qy) = L(B(Q),2,6%(Q); y)

Estimator of Q is obtained by maximizing £(%; y)

A

Q=arg mgx/:(Q; y)

Plug in estimators of 3 and o2

@
|
W
N~

>
N
I
>



The linear mixed effects model
Restricted likelihood estimation

MLE € and 62 underestimate the parametersQ and o2

[Patterson and Thompson, 1971] proposes the Restricted maximum
likelihood (REML) estimates by maximizing

LR(R.0% ) = / £(5,9,0% y)dB

Equivalent in a Bayesian framework to assume a uniform prior
distribution for the fixed effects 3



The linear mixed effects model
Estimation of the individual parameters

N
L(0;y) = H/P(Yhni;e)dni
i=1
N
= H/p(yflnf;G)p(m;@)dnf

— H/ e 202(}’1 XiB— 1771) (y: XiB— Xl"h)
27r|02|

—e =M i gy
(2m[Ql)>



The linear mixed effects model
Estimation of the individual parameters

Introduce

Q! Vi
A s i
AA— 0_2 7.yl [ 0 :| )

N
. — 2(YI XiB— :nl),(YI_XiIB_Xirli)
o) = 11 / maz\ e

—e 2"7/9 Ln; dnl
(2r(92))2

N
1 (5 X BT N (T X8 Tir
= HC /e%z(}ﬁ XiB Zlnl) (y, XiB Zﬂ],)dnl



The linear mixed effects model
Estimation of the individual parameters

Introduce
N

Q1 Yi ~
IN 2 s i L
N P
LO:y) = / e 0B XY (= Xy Xim)
H 27r\02\ 2

1
_e —3m i dn;

o X
B>

(27T|QI)2

N
1 (5 X BT N (T X8 Tir
= HC /e%z(}ﬁ XiB Zlnl) (y, XiB Zﬂ],)dnl

then by linearity of the model
= (2,-’2,')_12;()7; - 5(1/3)



The non-linear mixed effects model

’ yi= f(X,', 1/1,) +¢ei = f(Xh /8+77i) +&i

£(0: y5) = / @Io* )™ 2 (i 540 =X )= B g
(2m|2])=

The likelihood has no explicit form because of the non linearity of
the regression function f with respect to 7;

Existing methods are based on approximations or numerical
computations of the likelihood



The non-linear mixed effects model

Linearization methods

Principle: linearization of f to come down to a linear mixed effects
model
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Principle: linearization of f to come down to a linear mixed effects
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m First order methods (FO) [Beal and Sheiner, 1982]

m linearization of f around 3
= NONMEM software



The non-linear mixed effects model
Linearization methods

Principle: linearization of f to come down to a linear mixed effects
model

m First order methods (FO) [Beal and Sheiner, 1982]

m linearization of f around 3
= NONMEM software

m First order conditional methods (FOCE) [Lindstrom and Bates,
1990]

m linearization of f around %;
m NONMEM, SAS, proc NLMIXED, Splus/R function nlme



The non-linear mixed effects model
First order method

Linearization of f around (3
f(xg, i) = f(XUa/B+77:)
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The non-linear mixed effects model
First order method

Linearization of f around (3
f(xg, i) = f(XUa/B+77:)

= f(xz0) + (xu,ﬁ) ni + o(n?)

(‘M

An (approximated) model is deduced

Yi = f(XIJaﬁ) (levﬂ) T]l+5y

W

A linear mixed effects model is defined by plugging in a previously
estimated value of 38

Yii = f(xljwé) (le:ﬂ)nl"i_gu

fw



The non-linear mixed effects model
First order method

Iterative algorithm

Penalized nonlinear least squares (PNLS) step: with current
estimate Q and &2, conditional modes of 3 and 7; obtained by
minimizing

S i = F(X5 B+ m) (i — £(Xi, B+ ) + 82 by

Linear mixed effects (LME) step: first order Taylor expansion
of f around 3

Y 2
vi f(X,-,ﬂ—i-ni)—i-a—w(XiuB) ni + €

= MLE estimates of Q and o2



The non-linear mixed effects model

First order conditional estimate method

Iterative algorithm

Penalized nonlinear least squares (PNLS) step: with current
estimate Q and &2, conditional modes of 3 and 7; obtained by
minimizing

S = £, B+ ) (vi = £(Xi, B4 ) + 620/ Q2
Linear mixed effects (LME) step: first order Taylor expansion

of f around ¥; = 3 + #;

of

o7 (Xi, i) (i — i) + i

vi = f(Xi, i)+

= MLE estimates of Q and o2



The non-linear mixed effects model

First order conditional estimate method

Drawbacks

m Theoretical drawbacks: no well-known statistical properties of
the algorithm

m Practical drawbacks: very sensitive to the initial guess, does
not always converge, poor estimation of some parameters



The non-linear mixed effects model
Other classical methods

Methods based on numerical approximations of the likelihood

m Laplace method [Wolfinger, 1993]

m Gaussian quadrature method [Davidian and Gallant, 1993]
(SAS proc NLMIXED)

Properties

m Theoretical: maximum likelihood estimate is performed

m Practical: limited to few random effects



Model selection

Several steps:
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Several steps:

m Choice of the regression function f

m Choice of the covariate model C;



Model selection

Several steps:

m Choice of the regression function f
m Choice of the covariate model C;

m Choice of the random effects model Q: diagonal matrix,
block-diagonal matrix, plain matrix, etc



Model selection

Compute the likelihood of the different models
m Let O be the maximum likelihood estimate of 6 for model M:

Oan = Argmax La(0;y)

m Let Lo = Lr(Oaq;y) be the likelihood of model M.

Selecting the “most likely” models by comparing the likelihoods
favor models of high dimension (with many parameters)!

Penalize the models of high dimension
Select the model M that minimizes the penalized criteria

—2L A + pen(M)

Bayesian Information Criteria (BIC) : pen(M) = log(n) x dim(M).
Akaike Information Criteria (AIC) : pen(M) = 2dim x (M).



Model checking

Computation of

m Population predictions: f(x,j,ﬂA)
m Individual predictions: f(x,'j,zz,-)
= Population residuals: y;; — f(x;, ()

= Individual residuals: y; — f(Xij,T,ZA)i)
Plots

m Population/Individual predictions vs observations

m Population/Individual residuals vs population/Individual
predictions

m Normality of the residuals



Pharmacokinetic of Indomethacin
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Pharmacokinetic of Indomethacin

Diagonal covariance matrix Q

AIC = -90.24
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Pharmacokinetic of Indomethacin

Diagonal covariance matrix Q
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Pharmacokinetic of Indomethacin

Plain covariance matrix €

AIC = -95.28
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Pharmacokinetic of Indomethacin

Plain covariance matrix €

Population predictions

Population residuals
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Pharmacokinetic of Theophylline
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Non linear mixed model
Pharmacokinetic of Theophylline

— fixed  — Subject
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Non linear mixed model

Pharmacokinetic of Theophylline

Population predictions

Population residuals
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Pharmacokinetic of Theophylline

Dose k,,

L PP A (a—keptj _ a—Ka; b .
le Vi(ka,-_ke,-) (e € )+5U

Log parametrisation
Dose e'kai

Yij = elVi (elka'. — e”‘ei)

 _lke; .  Ika.
(e e 'tU—e e ’tu)+5ij

= Final model

m Random effects on lk., lk; and V
m Covariate effect (weight) on /ka



Non linear mixed model

Pharmacokinetic of Theophylline

Theophylline concentration in serum (mg/l)
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Non linear mixed model

Pharmacokinetic of Theophylline
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