
Estimation and Model Selection
in Mixed Effects Models

Part I

Adeline Samson1

1University Paris Descartes

Summer school 2009 - Lipari, Italy
These slides are based on Marc Lavielle’s slides



Outline

1 Introduction

2 Some pharmacokinetics-pharmacodynamics examples

3 Estimation in classical regression models

linear regression model

non linear regression model

examples

4 The mixed effects model

linear mixed effects model

non linear mixed effects model

examples



Some examples of data
Growth of children
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Some examples of data
Pharmacokinetics of Indomethacin

Time since drug administration (hr)
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Some examples of data
Pharmacokinetics of Theophylline

Time since drug administration (hr)
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The classical regression model

For one subject

yj = f (xj , β) + εj , 1 ≤ j ≤ n

yj ∈ R is the jth observation of the subject,

n is the number of observations

The regression variables, or design variables, (xj) are known,

The vector of parameters (β) is unknown.

The measurement error variables (εj) are unknown.
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The classical regression model

yj = f (xj , β) + εj , 1 ≤ j ≤ n

The (εj) are modelized as sequences of random variables.

The goal of the modeler is to develop simultaneously two kinds of
models:

(1) The structural model f
(2) The statistical model



The classical regression model

yj = f (xj , β) + εj , 1 ≤ j ≤ n

(1) The structural model f : We are not interested with a purely
descriptive model which nicely fits the data, but rather with a
mechanistic model which has some biological meaning and
which is a function of some physiological parameters.

Examples:
compartimental PK models,
viral dynamic models,
. . .



The classical regression model

yj = f (xj , β) + εj , 1 ≤ j ≤ n

(2) The statistical model aims to explain the variability observed
in the data:

the residual error model: distribution of (εj)
the model of covariates



The classical regression model

yj = f (xj , β) + εj , 1 ≤ j ≤ n

Some statistical issues:

Estimation:
estimate the parameters of the model

Model selection and model assessment:
Select and assess the “best” structural model f ,
Select and assess the “best” statistical model

Optimization of the design :
Find the optimal design (xj)
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Pharmacokinetics and Pharmacodynamics (PK/PD)

dose→ PK → concentration→ PD → response

Pharmacokinetics (PK): “What the body does to the drug”
Pharmacodynamics (PD): “What the drug does to the body”



One compartment PK model
intravenous administration



intravenous administration and first-order elimination

dose D (t=0)→ DRUG AMOUNT Q(t) → elimination (rate ke)

dQ
dt

(t) = −kQ(t) ; Q(0) = D

Q(t) = De−kt

C (t) =
Q(t)

V
=

D
V
e−ke t

C (t) : concentration of the drug,
V : volume of the compartment



intravenous administration and nonlinear elimination

dose D (t=0)→ DRUG AMOUNT Q(t) → nonlinear elimination

dQ(t)

dt
= − Vm Q(t)

V ∗ Km + Q(t)

C (t) =
Q(t)

V

(Vm,Km) : Michaelis-Menten elimination parameters,
V : volume of the compartment.



oral administration, first-order absorbtion and elimination

dose D at time t=0

absorption (rate ka)→ DRUG AMOUNT Q(t) → elimination (rate ke)

dQa

dt
(t) = −kaQa(t) ; Qa(0) = D

dQ
dt

(t) = kaQa(t)− keQ(t) ; Q(0) = 0

Qa(t): amount at absorption site.

C (t) =
Q(t)

V
= D

ka

V (ka − ke)

(
e−ke t − e−kat

)



Two compartments PK model
intravenous administration



Two compartments PK model

dQa

dt
(t) = −kaQa(t),

dQc

dt
(t) = kaQa(t)− keQc(t)− k12Qc(t) + k21Qp(t),

dQp

dt
(t) = k12Qc(t)− k21Qp(t).

Qa(t): amount at absorption site, Qa(0) = D.

Qc(t): amount in the central compartment, Qc(0) = 0.

Qp(t): amount in the peripheral compartment, Qp(0) = 0.
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The regression model

yj = f (xj , β) + εj , 1 ≤ j ≤ n

n is the number of observations.

The regression variables, or design variables, (xj) are known,

The vector of parameters β is unknown.

- linear model: f is a linear function of the parameters β
- non linear model: f is a non linear function of the parameters β
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The regression model
The statistical model

yj = f (xj , β) + εj

The simplest statistical model assumes that the (εj) are
independent and identically distributed (i.i.d) Gaussian random
variables:

εj ∼i .i .d . N (0, σ2)

Problem: estimate the parameters of the model θ = (β, σ2).



Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a popular statistical
method used for fitting a statistical model to data, and
providing estimates for the model’s parameters.
For a fixed set of data and underlying probability model,
maximum likelihood picks the values of the model parameters
that make the data "more likely" than any other values of the
parameters would make them



Maximum Likelihood Estimation

Consider a family of continuous probability distributions
parameterized by an unknown parameter θ, associated with a
known probability density function pθ.

Draw a vector y = (y1, y2, . . . , yn) from this distribution, and then
using pθ compute the probability density associated with the
observed data,

pθ(y) = pθ(y1, y2, . . . , yn)

As a function of θ with y1, y2, . . . , yn fixed, this is the likelihood
function

L(θ; y) = pθ(y)



Maximum Likelihood Estimation

Let θ? be the “true value” of θ.

The method of maximum likelihood estimates θ? by finding the
value of θ that maximizes L(θ; y).

This is the maximum likelihood estimator (MLE) of θ:

θ̂ = Argmax
θ
L(θ; y)



Maximum Likelihood Estimation
Some properties of the MLE

Under certain (fairly weak) regularity conditions, the MLE is
"asymptotically optimal":

The MLE is asymptotically unbiased: E (θ̂) −→
n→∞

θ?

The MLE is a consistant estimate of θ? (LLN): θ̂ −→
n→∞

θ?

The MLE is asymptotically normal (CLT)
√
n(θ̂ − θ?) −→

n→∞
N (0, I(θ?)−1)

I(θ?) = −E∂2
θ logL(θ?; y)/n is the Fisher Information Matrix

The MLE is asymptotically efficient, (Cramér-Rao)
This means that no asymptotically unbiased estimator has lower
asymptotic mean squared error than the MLE.
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The regression model
Maximum likelihood estimation

yj = f (xj , β) + εj , 1 ≤ j ≤ n
εj ∼i .i .d . N (0, σ2)

yj ∼ N (f (xj , β), σ2)

L(θ; y) =
n∏

j=1

L(θ; yj) =
n∏

j=1

pθ(yj)

=
n∏

j=1

(
2πσ2)− 1

2 e−
1

2σ2 (yj−f (xj ,β))2

=
(
2πσ2)− n

2 e−
1

2σ2
Pn

j=1(yj−f (xj ,β))2



The regression model
Maximum likelihood estimation

β̂ = Argmax
β
L(β; y)

= Argmax
β

{(
2πσ2)− n

2 e−
1

2σ2
Pn

j=1(yj−f (xj ,β))2
}

= Argmin
β

n∑
j=1

(yj − f (xj , β))2

(Maximum Likelihood estimate of β = Least-Square estimate of β)



The linear regression model

y1 = x11β1 + x12β2 + . . .+ x1pβp + ε1

y2 = x21β1 + x22β2 + . . .+ x2pβp + ε2
...

yn = xn1β1 + xn2β2 + . . .+ xnpβp + εn

Y = X β + ε



The linear regression model
Maximum Likelihood Estimation

y = X β + ε

εj ∼ N (0, σ2)

θ = (β, σ2)

y ∼ N (Xβ, σ2In)

L(θ; y) =
(
2πσ2)− n

2 e−
1

2σ2 ‖y−Xβ‖2

β̂ = Argmax
β
L(β; y) = Argmin

β
‖y − Xβ‖2



The linear regression model
Maximum Likelihood Estimation

y = X β + ε

β̂ = Argmin
β
‖y − Xβ‖2

= (X ′X )−1X ′y
= (X ′X )−1X ′(Xβ + ε)

= β + (X ′X )−1X ′ε
E (β̂) = β

Var(β̂) = σ2(X ′X )−1

− logL(θ?; y) =
n
2
log(2πσ2) +

1
2σ2 ‖y − Xβ‖2

I(β) = −1
n
E∂2

β logL(β, σ2; y) =
1

nσ2 (X ′X )



The linear regression model
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The linear regression model
Maximum Likelihood Estimation

y = X β + ε

Let V = Var(β̂) = σ2(X ′X )−1 be the variance-covariance matrix of β̂.

The diagonal elements of V are the variances of the components of β̂:

Vk,k is the variance of β̂k√
Vk,k is the standard error (s.e.) of β̂k

90% confidence interval for βk :

[β̂k − 1.645
√

Vk,k ; β̂k + 1.645
√

Vk,k ]



The non linear regression model

y1 = f (x11β1, x12β2, . . . , x1pβp) + ε1

y2 = f (x21β1, x22β2, . . . , x2pβp) + ε2
...

yn = f (xn1β1, xn2β2, . . . , xnpβp) + εn

Y = f (X , β) + ε



The non linear regression model
Maximum Likelihood Estimation

y = f (X , β) + ε

εj ∼ N (0, σ2)

y ∼ N (f (X , β), σ2In)

L(θ; y) =
(
2πσ2)− n

2 e−
1

2σ2 ‖y−f (X , β)‖2

β̂ = Argmax
β
L(β; y) = Argmin

β
‖y − f (X , β)‖2

⇒ No explicit expression for β̂, use of optimization algorithm
(Newton-Raphson)



Model selection

1 Compute the likelihood of the different models
Let θ̂M be the maximum likelihood estimate of θ for modelM:

θ̂M = Argmax
θ
LM(θ; y)

Let LM = LM(θ̂M; y) be the likelihood of modelM.

Selecting the “most likely” models by comparing the likelihoods
favor models of high dimension (with many parameters)!

2 Penalize the models of high dimension
Select the model M̂ that minimizes the penalized criteria

−2LM + pen(M)

Bayesian Information Criteria (BIC) : pen(M) = log(n)× dim(M).
Akaike Information Criteria (AIC) : pen(M) = 2dim× (M).



Linear regression model
Growth of children
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Non linear regression model
Pharmacokinetic of Indomethacin
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Some examples of data
Pharmacokinetics of Theophyllinee
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Each individual curve is described by the same parametric model,
with its own individual parameters



Analysis of data from several subjects

Classical regression model for one subject

yj = f (xj , ψ) + εj , 1 ≤ j ≤ n

Classical regression model for several subjects

yij = f (xij , ψ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

yij ∈ R is the jth observation of subject i ,

N is the number of subjects

ni is the number of observations of subject i .

xij are the regression variables, or design variables
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The mixed effects model

[Pinheiro and Bates, 2002]

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

yij ∈ R is the jth observation of subject i ,

N is the number of subjects

ni is the number of observations of subject i .

The regression variables, or design variables, (xij) are known,

The individual parameters (ψi ) are unknown.



The mixed effects model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

The (ψi ) and the (εij) are modelized as sequences of random
variables.

The goal of the modeler is to develop simultaneously two kinds of
models:

(1) The structural model f
(2) The statistical model



The mixed effects model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

(2) The statistical model aims to explain the variability observed
in the data:

the residual error model: distribution of (εij)
the model of the individual parameters: distribution of (ψi )

ψi = h(Ci , β, ηi )

Ci is a vector of covariates
β is a vector of fixed effects
ηi is a vector of random effects



The individual parameters

ψi = h(Ci , β, ηi )

examples:

additive random effects (Ci = 1)

ψi = β + ηi

effect of a covariate (β = [β1, β2], Ci = [1, sexi ])

ψi = β1 + β2sexi + ηi

multiplicative random effects

ψi = β eηi

"partial" vector of random effects

ψi = (ψi1, ψi2) = (β1 + ηi1, β2)
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The mixed effects model

yij = f (xij , ψi ) + εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

ψi = h(Ci , β, ηi )

Ci is a known vector of covariates
β is a unknown p-vector of fixed effects
ηi is a unknown q-vector of random effects

εij ∼ N (0, σ2)

ψi ∼ N (0,Ω)

Ω is the q × q variance-covariance matrix of the random effects

(Hyper or population) parameters: θ = (β,Ω, σ2)



The mixed effects model
Example

Classical regression model

yj = β1 + β2tj + εj

Mixed effects model

yij = ψi1 + ψi2tij + εij

= (β1 + ηi1) + (β2 + ηi2)tij + εij

where ηi = (ηi1, ηi2)′ ∼ N (0,Ω) means

(
ηi1
ηi2

)
∼ N

((
0
0

)
,

(
ω2

1 ω12
ω12 ω2

2

))



The mixed effects model

Some statistical issues:

Estimation:
estimate the population parameters of the model θ
estimate the individual parameters
compute confidence intervals

Model selection and model assessment:
Determine if a parameter varies in the population
Select the best combination of covariates
Compare several treatments

Optimization of the design :
Determine the design (the measurement times) that yields the
most accurate estimation of the model



The mixed effects model
Estimation of the population parameters

The maximum likelihood estimator of θ = (β,Ω, σ2) maximizes

L(θ; y) =
N∏

i=1

Li (θ; yi )

Li (θ; yi ) =

∫
p(yi , ηi ; θ)dηi

=

∫
p(yi |ηi ; θ)p(ηi ; θ)dηi

We know that

yi |ηi ∼ N
(
f (xi , h(Ci , β, ηi )), σ2Ini

)
ηi ∼ N (0,Ω)
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The mixed effects model
Estimation of the population parameters

Thus

Li (θ; yi ) =

∫
(2πσ2)−

ni
2 e−

1
2σ2 ||yi−f (xi ,h(Ci ,β,ηi ))||2 ×

(2π|Ω|)−
1
2 e−

1
2η
′
i Ω
−1ηidηi

Example: ψi = β + ηi

Li (θ; yi ) = C
∫
σ−ni |Ω|−

1
2 e−

1
2σ2 ||yi−f (xi ,ψi )||2− 1

2 (ψi−β)′Ω−1(ψi−β)dψi



The mixed effects model
Estimation of the population parameters

Thus

Li (θ; yi ) =

∫
(2πσ2)−

ni
2 e−

1
2σ2 ||yi−f (xi ,h(Ci ,β,ηi ))||2 ×

(2π|Ω|)−
1
2 e−

1
2η
′
i Ω
−1ηidηi

Example: ψi = β + ηi

Li (θ; yi ) = C
∫
σ−ni |Ω|−

1
2 e−

1
2σ2 ||yi−f (xi ,ψi )||2− 1

2 (ψi−β)′Ω−1(ψi−β)dψi



The mixed effects model
Estimation of the individual parameters

Assume that θ = (β,Ω, σ2) is known (or previously estimated) ψ̂i
maximizes the conditional distribution p(ψi |yi ; θ)

p(ψi |yi ; θ) =
p(ψi , yi ; θ)

p(yi : θ)

=
p(yi |ψi ; θ)p(ψi ; θ)

p(yi : θ)

∝ p(yi |ψi ; θ)p(ψi ; θ)

Example: ψi = β + ηi

p(ψi |yi ; θ) = Ce−
1
2 ||yi−f (xi ,ψi )||2− 1

2 (ψi−β)′Ω−1(ψi−β)

ψ̂i minimizes a penalized least-square criteria:

ψ̂i = argmin
ψ

(
||yi − f (xi , ψi )||2 −

1
2

(ψi − β)′Ω−1(ψi − β)

)
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The linear mixed effects model
Maximum likelihood estimate

yi = Xi ψi + εi

εi ∼ N (0, σ2Ini )

ψi ∼ N (β,Ω)

We have yi = Xi β + Xi ηi + εi thus by linearity

yi ∼ N (Xiβ,XiΩX ′i + σ2Ini )

Set Vi = XiΩX ′i /σ
2 + Ini , thus the likelihood is explicit

L(θ; y) =
N∏

i=1

(2π|σ2Vi |)−
1
2 exp

(
− 1
2σ2 (yi − Xiβ)′V−1

i (yi − Xiβ)

)

Computation of the MLE θ̂ via an optimization routine
(Newton-Raphson iterations or EM algorithm)
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The linear mixed effects model
Profiled likelihood

Optimization much simpler using concentrated or profiled
likelihood, ie likelihood as a function of Ω

From
yi ∼ N (Xiβ, σ

2Vi )

one can deduce

β̂(Ω) =

(
N∑

i=1

X ′i ViXi

)−1 N∑
i=1

X ′i V
−1
i yi

σ̂2(Ω) =

∑N
i=1

(
yi − Xi β̂(Ω)

)′
V−1

i

(
yi − Xi β̂(Ω)

)
∑N

i=1 ni
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The linear mixed effects model
Profiled likelihood

Using these expressions, derive the profiled log-likelihood L(Ω; y) as
a function of Ω:

L(Ω; y) = L(β̂(Ω),Ω, σ̂2(Ω); y)

Estimator of Ω is obtained by maximizing L(Ω; y)

Ω̂ = argmax
Ω
L(Ω; y)

Plug in estimators of β and σ2

β̂ = β̂(Ω̂)

σ̂2 = σ̂2(Ω̂)
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The linear mixed effects model
Restricted likelihood estimation

MLE Ω̂ and σ̂2 underestimate the parametersΩ and σ2

[Patterson and Thompson, 1971] proposes the Restricted maximum
likelihood (REML) estimates by maximizing

LR(Ω, σ2; y) =

∫
L(β,Ω, σ2; y)dβ

Equivalent in a Bayesian framework to assume a uniform prior
distribution for the fixed effects β



The linear mixed effects model
Estimation of the individual parameters

L(θ; y) =
N∏

i=1

∫
p(yi , ηi ; θ)dηi

=
N∏

i=1

∫
p(yi |ηi ; θ)p(ηi ; θ)dηi

=
N∏

i=1

∫
1

(2π|σ2|)
ni
2
e−

1
2σ2 (yi−Xiβ−Xiηi )

′(yi−Xiβ−Xiηi )

1

(2π|Ω|)
1
2
e−

1
2η
′
i Ω
−1ηidηi



The linear mixed effects model
Estimation of the individual parameters

Introduce

∆′∆ =
Ω−1

σ2 , ỹi =

[
yi
0

]
, X̃i =

[
Xi
0

]
, Z̃i =

[
Xi
∆

]

L(θ; y) =
N∏

i=1

∫
1

(2π|σ2|)
ni
2
e−

1
2σ2 (yi−Xiβ−Xiηi )

′(yi−Xiβ−Xiηi )

1

(2π|Ω|)
1
2
e−

1
2η
′
i Ω
−1ηidηi

=
N∏

i=1

C
∫

e−
1

2σ2 (ỹi−X̃iβ−Z̃iηi )
′(ỹi−X̃iβ−Z̃iηi )dηi

then by linearity of the model

η̂i = (Z̃ ′i Z̃i )
−1Z̃ ′i (ỹi − X̃i β̂)
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The non-linear mixed effects model

yi = f (Xi , ψi ) + εi = f (Xi , β + ηi ) + εi

L(θ; yi ) =

∫
(2π|σ2|)−

ni
2

(2π|Ω|)
1
2

e−
1

2σ2 (yi−f (Xi ,β+ηi ))′(yi−f (Xi ,β+ηi ))− 1
2η
′
i Ω
−1ηidηi

The likelihood has no explicit form because of the non linearity of
the regression function f with respect to ηi

Existing methods are based on approximations or numerical
computations of the likelihood



The non-linear mixed effects model
Linearization methods

Principle: linearization of f to come down to a linear mixed effects
model

First order methods (FO) [Beal and Sheiner, 1982]
linearization of f around β
NONMEM software

First order conditional methods (FOCE) [Lindstrom and Bates,
1990]

linearization of f around ψi
NONMEM, SAS, proc NLMIXED, Splus/R function nlme
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The non-linear mixed effects model
First order method

Linearization of f around β

f (xij , ψi ) = f (xij , β + ηi )

= f (xij , β) +
∂f
∂ψ

(xij , β) ηi + o(η2
i )

An (approximated) model is deduced

yij = f (xij , β) +
∂f
∂ψ

(xij , β) ηi + εij

A linear mixed effects model is defined by plugging in a previously
estimated value of β

yij = f (xij , β̂) +
∂f
∂ψ

(xij , β̂) ηi + εij
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The non-linear mixed effects model
First order method

Iterative algorithm

1 Penalized nonlinear least squares (PNLS) step: with current
estimate Ω̂ and σ̂2, conditional modes of β and ηi obtained by
minimizing

N∑
i=1

(yi − f (Xi , β + ηi )
′(yi − f (Xi , β + ηi )) + σ̂2η′i Ω̂

−1ηi

2 Linear mixed effects (LME) step: first order Taylor expansion
of f around β̂

yi ≈ f (Xi , β̂ + η̂i ) +
∂f
∂ψi

(Xi , β̂) ηi + εi

⇒ MLE estimates of Ω and σ2



The non-linear mixed effects model
First order conditional estimate method

Iterative algorithm

1 Penalized nonlinear least squares (PNLS) step: with current
estimate Ω̂ and σ̂2, conditional modes of β and ηi obtained by
minimizing

N∑
i=1

(yi − f (Xi , β + ηi )
′(yi − f (Xi , β + ηi )) + σ̂2η′i Ω̂

−1ηi

2 Linear mixed effects (LME) step: first order Taylor expansion
of f around ψ̂i = β̂ + η̂i

yi ≈ f (Xi , ψ̂i ) +
∂f
∂ψi

(Xi , ψ̂i ) (ψi − ψ̂i ) + εi

⇒ MLE estimates of Ω and σ2



The non-linear mixed effects model
First order conditional estimate method

Drawbacks

Theoretical drawbacks: no well-known statistical properties of
the algorithm
Practical drawbacks: very sensitive to the initial guess, does
not always converge, poor estimation of some parameters



The non-linear mixed effects model
Other classical methods

Methods based on numerical approximations of the likelihood

Laplace method [Wolfinger, 1993]
Gaussian quadrature method [Davidian and Gallant, 1993]
(SAS proc NLMIXED)

Properties

Theoretical: maximum likelihood estimate is performed
Practical: limited to few random effects



Model selection

Several steps:

Choice of the regression function f
Choice of the covariate model Ci

Choice of the random effects model Ω: diagonal matrix,
block-diagonal matrix, plain matrix, etc
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Model selection

1 Compute the likelihood of the different models
Let θ̂M be the maximum likelihood estimate of θ for modelM:

θ̂M = Argmax
θ
LM(θ; y)

Let LM = LM(θ̂M; y) be the likelihood of modelM.

Selecting the “most likely” models by comparing the likelihoods
favor models of high dimension (with many parameters)!

2 Penalize the models of high dimension
Select the model M̂ that minimizes the penalized criteria

−2LM + pen(M)

Bayesian Information Criteria (BIC) : pen(M) = log(n)× dim(M).
Akaike Information Criteria (AIC) : pen(M) = 2dim× (M).



Model checking

Computation of

Population predictions: f (xij , β̂)

Individual predictions: f (xij , ψ̂i )

Population residuals: yij − f (xij , β̂)

Individual residuals: yij − f (xij , ψ̂i )

Plots

Population/Individual predictions vs observations
Population/Individual residuals vs population/Individual
predictions
Normality of the residuals



Pharmacokinetic of Indomethacin

Time since drug administration (hr)
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=⇒ Choice of the covariance matrix Ω



Pharmacokinetic of Indomethacin
Diagonal covariance matrix Ω

AIC = -90.24
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Pharmacokinetic of Indomethacin
Diagonal covariance matrix Ω
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Pharmacokinetic of Indomethacin
Plain covariance matrix Ω

AIC = -95.28
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Pharmacokinetic of Indomethacin
Plain covariance matrix Ω
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Pharmacokinetic of Theophylline
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Non linear mixed model
Pharmacokinetic of Theophylline
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Non linear mixed model
Pharmacokinetic of Theophylline
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Pharmacokinetic of Theophylline

yij =
Dose kai

Vi (kai − kei )
(e−kei tij − e−kai tij ) + εij

Log parametrisation

yij =
Dose e lkai

e lVi (e lkai − e lkei )
(e−e lkei tij − e−e lkai tij ) + εij

=⇒ Final model

Random effects on lke , lka and V
Covariate effect (weight) on lka



Non linear mixed model
Pharmacokinetic of Theophylline
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Non linear mixed model
Pharmacokinetic of Theophylline
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