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Kalman Filter

In 1960, R.E. Kalman published his seminal paper describing an
efficient recursive solution to the discrete, linear filtering problem
from a series of noisy measurements.
Since its discovery over 40 years ago, much research has gone
into refining its estimation accuracy and into its extensions to
highly nonlinear models.

References:

R.E. Kalman, A new approach to linear filtering and prediction
problems, Trans of the ASME - Journal of Basic Engineering 82
(Series D): 35-45, 1960
F.L. Lewis, Optimal Estimation with an Introduction to Stochastic
Control Theory, John Wiley & Sons, 1986
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A Hypothetical Example
Reference: P.S. Maybeck, Stochastic Models, Estimation, and
Control, Vol. 1, Academic Press, 1979.

Suppose you are at lost at sea during the night and trying to
determine your location.

σz1

z1

Figure: Conditional density of position based on the measured value z1.

Hien Tran Nonlinear Filtering and Estimation



Kalman Filter
Nonlinear Kalman Filtering

Continuous Filtering
Parameter Estimation
Estimation Examples

The Linear Discrete Kalman Filter

A Hypothetical Example

Now, a trained navigator friend takes an independent estimation of
the position right after you do (so that the true position has not
changed at all !).

z1 z2

σz2

Figure: Conditional density of position based on the measured value z2.
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A Hypothetical Example
At this point, you have two measurements available to estimate your
current position.

Question: How do you combine these data? (so that you have a
better estimate on your position than either the first or the second
estimate)

z1 z2µ

σ

Figure: Conditional density of position based on the measured values z1 and
z2.
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Optimal Estimate

µ =
σ2

z2

σ2
z1

+ σ2
z2

z1 +
σ2

z1

σ2
z1

+ σ2
z2

z2,
1
σ2 =

1
σ2

z1

+
1
σ2

z2

If σz1 = σz2 , the best estimate should be the average of the two.
If σz1 > σz2 (i.e., z2 is a better estimate), then the formula
indicates that we should weight our estimate more toward z2.
The variance of the optimal estimate is less than both σ2

z1
and σ2

z2
.

Rewrite the optimal estimate as:

µ = z1 + K
[
z2 − z1

]
, K =

σ2
z1

σ2
z1

+ σ2
z2

,

σ2 = σ2
z1
− Kσ2

z1
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Kalman Filter: Concepts

µ = z1 + K
[
z2 − z1

]
, K =

σ2
z1

σ2
z1

+ σ2
z2

,

σ2 = σ2
z1
− Kσ2

z1

Now, suppose that z1 is the estimate from your model and z2 is the
measurement, Kalman filter is a technique that combines the model
estimate with measurement to derive a better estimate for the model
by considering both the error in the model and the error in the data.

The same idea can be extended to estimate the unknown parameters
in the model as well as the states - dual estimation.
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The Linear Discrete Kalman Filter

The Kalman filter addresses the general problem of estimating the
state x ∈ Rn of a linear discrete-time process

xk+1 = Axk + wk , w ∼ N (0,V )

yk = Cxk + vk , v ∼ N (0,R)

where xk ∈ Rn, yk ∈ Rm and wk , vk are additive white gaussian noise
(AWGN) processes.
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Kalman Filtering Equations

Prediction Steps (Time Update):

x̂−k = Ax̂k−1

P−k = APk−1AT + V

Correction Steps (Measurement
Update):

Kk = P−k CT [CP−k CT + R
]−1

x̂k = x̂−k + Kk (yk − Cx̂−k )

Pk =
[
I − Kk C

]
P−k

limR→0 Kk = C−1

limP−k →0 = 0

On-line Estimation
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Filter Parameters and Tuning

Good filter performance can be achieved by tuning the filter
parameters, the model noise and measurement noise
covariances, V and R.
The determination of the model noise covariance V is generally
more difficult.
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Nonlinear Kalman Filtering

Consider a nonlinear discrete-time model and observation:

xk+1 = f (tk , xk ) + wk , w ∼ N (0,V )

yk = h(tk , xk ) + vk , v ∼ N (0,R)

where xk ∈ Rn, yk ∈ Rm,q ∈ Rp and wk , vk are additive white
gaussian noise (AWGN) processes.

Suboptimal filters were developed to handle these situations. These
filters employ

Linearizations of the model and measurement (Extended KF)
Approximations of the underlying distribution to a Gaussian pdf
(Unscented KF)
Monte Carlo sampling techniques (Ensemble KF, Particle
Filtering)
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Extended Kalman Filter

The Extended Kalman Filter (EKF) linearizes the state dynamics
around the current estimate.

Prediction Steps:

x̂−k = f (tk−1, x̂k−1)

P−k = ∇f (x̂−k )Pk−1∇f T (x̂−k ) + V

Correction Steps:

Kk = Pk∇hT (x̂−k )
[
∇h(x̂−k )Pk∇hT (x̂−k ) + R

]−1

x̂k = x̂−k + Kk (yk − hk (x̂−k ))

Pk =
[
I − Kk∇h(tk , x̂−k )

]
P−k

Hien Tran Nonlinear Filtering and Estimation



Kalman Filter
Nonlinear Kalman Filtering

Continuous Filtering
Parameter Estimation
Estimation Examples

Extended Kalman Filter
Unscented Kalman Filter
Pitfalls to Discrete Filtering

Extended Kalman Filter

In the EKF, the state distribution is approximated by a gaussian
random variable (GRV), which is then propagated through the
linearization.
In highly nonlinear problems, the EKF tends to be very inaccurate
and underestimates the true covariance of the estimated state.
This can lead to poor performance and filter divergence.

⇒ Can we do better?

Unscented Kalman Filter was designed to overcome these
problems !
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Unscented Kalman Filter
Reference: S. Haykin, Kalman Filtering and Neural Networks, John
Wiley & Sons, Inc., 2001.

Figure: Examples of mean and covariance propagation.
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Unscented Kalman Filtering

The Unscented Kalman Filter (UKF) is built around the idea that
it is easier to approximate the underlying distribution than it is to
approximate the state dynamics.
Uses a deterministic sampling approach to approximate the
distribution.
The state distribution is approximated by a GRV, but is
represented by a set of sigma points, completely capturing the
true mean and covariance of the state distribution.
When propagated through the nonlinear system, the posterior
mean and covariance are captured to second order of accuracy.
Computational cost is equal to the EKF (of order n3).
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UKF Equations

2n + 1 (n is the state dimension) sigma vectors are generated
according to

X0 = x̄ (1)

Xi = x̄ +
(√

(n + λ)Px
)

i , i = 1, . . . ,n (2)

Xi = x̄ −
(√

(n + λ)Px
)

i , i = n + 1, . . . ,2n (3)

where Xi denotes the i-th column of the matrix X .

⇒These points are where the distribution of x̂ are sampled. In
practice, Cholesky factors are used as the matrix square root.
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UKF Equations

Each sample point has an associated weight, weighting the mean
estimation and the covariance estimation differently. W m ∈ Rn×2n+1

are the weights for the mean, W c ∈ Rn×2n+1 for the covariance
estimate.

W m
0 = λ(n + λ)−1

W c
0 = λ(n + λ)−1 + (1− α2 + β)

W m
i = W c

i =
(
2(n + λ)

)−1
, i = 1 . . . 2n

where λ, α, β are all tuning parameters.
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UKF Equations
Predictions:

X = sigmapoints(xk ,Pk )

X̂i = f (tk ,Xi )

x̂−k =
2n∑

i=0

W m
i X̂i

P̂−k = V +
2n∑

i=0

W c
i
[
Xi − x̂−k

][
Xi − x̂−k

]T
X−k = sigmapoints(x̂−k , P̂

−
k )

Yk = h(tk ,X−k )

ŷk =
2n∑

i=0

W m
i Yi

where Xi and Yi denote the i-th column.
Hien Tran Nonlinear Filtering and Estimation
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UKF Equations

Update/Correction Equations:

Pȳk ȳk = R +
2n∑

i=0

W c
i
[
Yi − ŷk

][
Yi − ŷk

]T
Px̄k ȳk =

2n∑
i=0

W c
i
[
X−i,k − x̂−k

][
Yi − ŷk

]T
K = Px̄k ȳk P−1

ȳk ȳk

x̂k = x̂−k + K (zk − ŷk )

Pk = P−k − KPȳk ȳk K T .
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Unscented Kalman Filtering

The UKF is a recursive implementation of the Unscented
Transform (UT), which computes the statistics of a random
variable that undergoes a nonlinear transformation.
Works well on nonlinear problems.
Similar to particle filters, only with a deterministic sampling
method.
Further numerically robust versions available in the Square Root
Filter.

Xi = x̄ ±
(√

(n + λ)Px
)

i , i = 1, . . . ,2n
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Pitfalls to Discrete Filtering

If data are sparse, the step size taken can be large, affecting the
integration accuracy.
Dynamics that affect accuracy may be missed by a single step.
In fixed step size integrators, there is no automatic error control.
Discretization of the model inherently changes the model to
something new.
Discrete filters are more sensitive to amount and quality of data.

⇒ Solution: Continuous versions of the Kalman Filters.
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Continuous Kalman Filtering

The continuous Kalman Filter is known as the Kalman-Bucy Filter.
Continuous filters do not require an a-priori discretization of the
state space dynamics.
The state space model is augmented with a matrix Riccati
equation describing the propagation of the covariance matrix.
The augmented system constitutes a system of stochastic
differential equations (SDEs).
Multistep, adaptive mesh integrators can be used for state and
covariance prediction, increasing accuracy and increasing
information content.
Maintain the assumption that the observations are discrete in
time.
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Extended Kalman-Bucy Filter

The Extended Kalman-Bucy Filter (EKBF) employs an augmented
state space,

˙̂x(t) = f (x̂(t), t)

Ṗ(t) = P(t)∇f (x̂)T +∇f (x̂)P(t) + V .

These equations are integrated from tk to tk+1. The correction
equations remain the same,

Kk = P−(tk )∇h(x̂)T [∇h(x̂)P−(tk )∇h(x̂)T + R
]−1

Pk =
[
I − Kk∇h(x̂)

]
P−(tk )

x̂k = x̂−k + Kk
[
zk −∇h(x̂)x̂−k

]
.
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Extended Kalman-Bucy Filter

The EKBF performs better than the EKF when fewer
observations are available, either longitudinally or from issues
arising from state observability.
Tuning the integration tolerances will affect the tracking ability of
the filter.

If the problem is too nonlinear, the EKBF will still fail. This motivates
the Unscented Kalman-Bucy Filter (UKBF).
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Unscented Kalman-Bucy Filter

The UKBF is a natural extension of the UKF in continuous time. The
sigma points become a function of time, and are given as

X (t)0 = x̄(t)

X (t)i = x̄(t) +
(√

(n + λ)P(t)x
)

i , i = 1, . . . ,n

X (t)i = x̄(t)−
(√

(n + λ)P(t)x
)

i , i = n + 1, . . . ,2n
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Unscented Kalman-Bucy Filter

The augmented state space model is given by

˙̂x(t) = f
(
X (t), t

)
W m

Ṗ(t) = X (t)Wf T (X (t), t
)

+ f
(
X (t), t

)
WX T (t) + V ,

where X (t) is implicitly a function of x̂(t) and P(t) and the matrix W
is given by

W =
(
I − [W m

0 · · ·W m
2n]
)
· diag

(
W 0

c · · ·W 2n
c
)
·
(
I − [W m

0 · · ·W m
2n]
)T
.

The correction equations remain the same (omitted for brevity). The
state space is integrated from tk to tk+1.
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Remarks

If we assume both filters use the same initial conditions and
covariance matrices, we observe:

For sparse data sets, the continuous filters will outperform the
discrete filters under the same filtering conditions.
For highly nonlinear systems, the UK(B)F will outperform the
EK(B)F – this is well known.
The UK(B)F will track the unobserved states better than the
EK(B)F.
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Parameter Estimation

In modeling biological processes, modelers frequently wish to relate
biological parameters characterizing a model, θ, to collected
observations making up some data set, y . We assume that the
relationship between θ and y is described by a nonlinear function G

G(θ) = y

For example, consider a simple model for the concentration of a drug
introduced in a biological system

dx(t)
dt

= −ax(t) + bu(t)

y(t) = cx(t)

Hien Tran Nonlinear Filtering and Estimation
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Parameter Estimation

Assuming that x(0) = 0, the solution, which is computed from the
variation of constants formula, is given by

y(t) = cb
∫ t

0
e−a(t−s)u(s)ds

≡ G(θ)

where θ = (a,b, c).

Hien Tran Nonlinear Filtering and Estimation
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Parameter Estimation

The parameter estimation problem can be solved by the Kalman Filter
by writing a new state-space representation,

θk+1 = θk + rk

yk = G(θk ) + nk

where rk is the noise of the stationary parameter process and nk is
the noise of the nonlinear observation function G.
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Dual Estimation

Dual estimation problems consist of estimating both the states, xk ,
and the parameters, θk , given noisy data, yk .

Joint Filtering

ẋ = f (t , x , θ)

θ̇ = 0

Increase the number of states (large number of parameters)
Errors propagate from the state into the parameter (which
subsequently propagate back into the state)

⇒ Inaccurate results or divergence of the filter
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Dual Filter

Idea: Running two filters concurrently
State Filter estimates the state using the current parameter
estimate, δ̂−k .
Parameter Filter estimates the parameters using the current
state estimate, x̂−k .

Do not increase the number of states for estimation.
Errors will not feedback into the next estimate.
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A Nonlinear Spring Model

A simple nonlinear spring-mass-dashpot model:

ẍ + γẋ + kx + bx3 = 0,

The observed states are
y = (x , ẋ)

Problem: Estimate parameters θ = (k ,b, γ) using simulated data with
AWGN.
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Dual Estimation Results

k b γ
“True’" 60 100 4
“UKF’" 59.7 96.985 3.775
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Figure: Convergence of the parameter
estimation (Dual UKF).
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Figure: Comparison of the true states
(solid) versus the dual UKF state
estimation.
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HIV Dynamics

An acute HIV infection with no treatment can be modeled as

Ṫ = λ− dT − kVT

Ṫ ∗ = kTV − δT ∗

V̇ = NδT ∗ − cV

where T ∗ is infected T-cells, V is free viron particles, λ is the
recruitment of uninfected T-cells, d is the per capita death rate of
uninfected cells, k is the infection rate, δ is the death rate of
uninfected cells, N is the number of new HIV virons and c is the
clearance rate.

Collected data could be a combination of viral load (V ) and healthy
T-cell count (T ).
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HIV Model

To begin, we consider the parameter estimation problem of estimating
all 6 parameters in the model, θ = (λ,d , k , δ,N, c). However, the dual
UKF algorithm failed to converge.

Question: What’s happened?

y(t) = cb
∫ t

0
e−a(t−s)u(s)ds

≡ G(θ)

"A priori" local analyses:
Sensitivity
Identifiability (Subset Selection)
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Sensitivity Analysis
Consider a mathematical model

dx
dt

(t) = f (t , x(t), θ)

with observation process

y(t) = h(t , x(t), θ)

The sensitivity of outputs with respect to parameters is defined by

dyi

dθj

Using the chain rule for differentiation,

dy
dθ

=
∂h
∂x

dx
dθ

+
∂h
∂θ

where
d
dt

dx
dθ

=
∂f
∂x

dx
dθ

+
∂f
∂θ
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Subset Selection

Reference: M. Fink, A. Attarian and H. Tran, Subset selection for
parameter estimation in an HIV model, Proc. in Applied Mathematics
and Mechanics 7, Issue 1, (2008) 1121501-1121502.

Consider the linear least squares problem,

min
x∈Rm

‖Ax − b‖2
2

If A ∈ Rp×m is nearly rank deficient, then this problem is very
ill-conditioned. A standard technique is to compute an SVD of A and
then set to zero all singular values below a certain threshold. A good
threshold value to use is the numerical rank of a matrix

rank(A, ε) = max
{

i
∣∣ |σi |
|σ1|

> ε‖A‖m
}
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Subset Selection in Parameter Estimation

Denote by y(θ) the model output as a function of parameter θ. We
can approximate the change in the output for a change in parameter
from θ to θ̂ as

y(θ̂)− y(θ) ≈ dy
dθ

(θ̂ − θ) +O
(
(θ̂ − θ)2)

In the context of the linear least squares problem

min
θ∈Rm

‖dy
dθ

∆θ −∆y‖2
2

and if the matrix A = dy
dθ has numerical rank k < m, it makes sense to

minimize the residual over a subspace of dimension k by modifying k
parameters while keeping m − k parameters constant. To determine
which components of θ to modify, we look for a maximally
independent set of columns of A.
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Subset Selection Algorithm

SVD followed by QR with Column Pivoting:
Compute an SVD of A = UΣV T and determine a numerical rank
estimate k .
Let V = [Vk ,Vm−k ], where Vk is the first k columns of V .
Perform a QR factorization with pivoting on V T

k to obtain

V T
k P = QR

Choose as the subset of components of θ the first k components
of PT θ.

For the 3-dimensional HIV model, sensitivity and subset selection
reveal that only 3 parameters θ = (λ, k , δ) of the 6 parameters
(λ,d , k , δ,N, c) are most identifiable and sensitive (locally).
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Dual Estimation Results

λ k δ

“True’" 10 8× 10−4 0.7
“UKF" 9.5 8.2× 10−4 0.701
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Figure: Convergence of the parameter
estimation (Dual UKF).
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Figure: Comparison of the true states
(solid) versus the dual UKF state
estimation.
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