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Abstract:  
 
While the answer to the test of a model for prior identifiability is qualitative (yes / no / sorry, I 
do not know), one would like to know how much the parameters of interest are identifiable.  
 
This relates to assessing parameter uncertainty.  
 
This unit concentrates on methods based on the Fisher information matrix. Their advantages 
and limitations are delineated, and alternative routes are briefly mentioned. 
 
 
 
More on the material presented here can be found in 
 
Eric Walter and Luc Pronzato, Identification of Parametric Models from Experimental Data, 
Springer, London, 1997.  
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For knowledge-based models, finding �� is not enough, in general. 
 
Important to evaluate the uncertainty attached to ��. 
 
Several methods can be used (and possibly combined).  
 
None is without drawbacks. 
 
 
We shall concentrate on methods based on the Fisher information matrix (FIM), because 
 

• they come at almost no cost, 
• they nicely connect to (local) identifiability, 
• they are simple enough to be usable (in Unit 3) for experiment design. 

 
Alternative approaches will be briefly mentioned, though. 
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FIM-based methods 
 

 
 

Let p̂(.)  be an unbiased estimator of p* , i.e., such that 
 

E
ys|p*

 p̂(ys)  = p* . 

 
[If it were possible to estimate p̂  an infinite number of times, then the mean of the estimates would 
coincide with the true value p* .] 
 
The covariance matrix 

P = E
ys|p*

  {[ p̂(ys)  – p* ][ p̂(ys)  – p* ]T}. 

 
quantifies how the estimates p̂  are spread around p* .  
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One would like the estimates p̂  to be as concentrated as possible around p* , of course.  
 
 p̂ 1(.) with covariance matrix P1 is more efficient than p̂ 2(.) with covariance matrix P2 if P1 < P2. 
 

P1 < P2 � P2 – P1 positive-definite � all eigenvalues of P2 – P1 are strictly positive. 
 
A natural request is thus to make P as small as possible.  
 
Cramér-Rao inequality provides a lower bound to what can be achieved. 

 

Cramér-Rao inequality 

Under technicalities, the covariance P of any unbiased estimator of p*  satisfies 
 

P ≥ F–1(p* ), 
 
with F the FIM. 
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FIM can be computed in either of two ways: 
 

F(p) = E
ys|p

  { [
∂

∂p  ln πy(ys|p)][
∂

∂p  ln πy(ys|p)]T} = – E
ys|p

  {
∂2

∂p∂pT  ln πy(ys|p)}. 

 
• ln πy(ys|p) is the log-likelihood of the data ys, 

• [
∂

∂p  ln πy(ys|p)] is its gradient, 

•  
∂2

∂p∂pT  ln πy(ys|p) is its Hessian. 

 
 
 
If P = F–1(p* ) then the estimator is efficient.  
 
 

FIM invertible ⇒ all parameters (locally) identifiable. 
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Nice case: LP model + Gaussian noise 
 
Assume  

ys = Rp*  + εεεε, 
 
where εεεε is i.i.d. N(0, ΣΣΣΣ), with known covariance ΣΣΣΣ.  
 
 
Likelihood: 

πy(ys|p) = [(2π)nt det ΣΣΣΣ]–1/2 exp [– 
1
2 (ys – Rp) TΣΣΣΣ–1(ys – Rp)]. 

 
Gradient of log-likelihood: 

∂

∂p  ln πy(ys|p) = RTΣΣΣΣ–1(ys – Rp), 

Hessian of log-likelihood: 
∂2

∂p∂pT  ln πy(ys|p) = –RTΣΣΣΣ–1R. 
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FIM then given by: 

F(p) = – E
ys|p

  {
∂2

∂p∂pT  ln πy(ys|p)} = E
ys|p

  {RTΣΣΣΣ–1R} = RTΣΣΣΣ–1R.   ☺ 

 
F(p) therefore does not depend on the value of p (VERY convenient!)  
 
Least-squares estimator, weighted by inverse of the noise covariance, 
 

p̂ ls = (RTΣΣΣΣ–1R)–1RTΣΣΣΣ–1ys, 
 
is unbiased and efficient. Its covariance matrix is 
 

Pls = (RTΣΣΣΣ–1R)–1 = F–1, 
 

and Pls can be obtain at little or no cost (hidden in the computation of p̂ ls).  
 
95% confidence regions for the parameters then easy to derive. 
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EXAMPLE 

 
Consider the (discrete-time) finite-impulse-response model (FIR) 
 ����, �	 
 ��
�� � 1	 � ��
�� � 2	, 

 
both LP and LI. 
 
Assume ���	 
 ����, ��	 � ���	,        � 
 1, … , 10, 

 
 

with n(k) i.i.d. N(0, σ2). 
 
Then  

ys = � ��1	���10	�,       R = �
�0	 
��1	� �
�9	 
�8	 �     and    ΣΣΣΣ = I  σ2. 
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So 

F(p) = RTΣΣΣΣ–1R = ��� � ∑ 
��!	"#$% ∑ 
�!	
�! � 1	"#$%∑ 
�!	
�! � 1	"#$% ∑ 
��! � 1	"#$% &. 

 
 
FIM depends on u, but not on p. 

 
 
Unfortunately, most knowledge-based models are not LP! 
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Not so nice case: non-LP model + Gaussian noise 
 
 
Maximum-likelihood estimator then (at best) asymptotically normal and asymptotically efficient.  
 

p̂ ml 
'()*+  N(p* , F–1(p*)) 

 
as number of data points tends to infinity. 
 
Hence the idea of characterizing the uncertainty in p̂ ml by F–1(p̂ ml).  
 
 
Assume, for instance, that  

y(ti) = ym(ti, p* ) + ε(ti),   i = 1, … , nt, 
 

where the ε(ti)’s are independent random variables distributed N(0, σti
2 ), with σti

2  known.  
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Log-likelihood: 

ln πy(ys|p) = (term independent of p) – 
1
2  ∑

i=1

nt
 
 

[y(ti) – ym(ti, p)]2

σti
2

 . 

Gradient of log-likelihood: 

∂

∂p  ln πy(ys|p) = ∑
i=1

nt
 
 

1

σti
2
  [y(ti) – ym(ti, p)] 

∂

∂p  ym(ti, p). 

 
FIM: 

F(p) = E
ys|p

 { [
∂

∂p  ln πy(ys|p)][
∂

∂p  ln πy(ys|p)]T} 

 

F(p)  = E
ys|p

 {∑
k=1

nt
 
 

1

σtk
2
  
∂ym(tk, p)
∂p   [y(tk) – ym(tk, p)] ∑

i=1

nt
 
  [y(ti) – ym(ti, p)] 

1

σti
2
  
∂ym(ti, p)
∂pT  } . 
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Since 

E
ys|p

 {[ y(tk) – ym(tk, p)][y(ti) – ym(ti, p)]} = σti
2 δik, 

 
 
previous nightmare of a formula simplifies into 
 

F(p) = ∑
i=1

nt
 
 

1

σti
2
  
∂ym(ti, p)
∂p   

∂ym(ti, p)
∂pT   , 

 
approximation of the Hessian used in the Gauss-Newton algorithm, probably already computed. 
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EXAMPLE 

 
Consider the (non-LP) model 
 ���,- , �	 
 �� exp����,-	    for  ,- 4 0, 
 
and assume that  ��,-	 
 ���,- , ��	 � ���	, � 
 1, 2, 

 
with n(k) i.i.d. N(0, σ2). 
 
Then 

5�m7,�,�85� 
 95�m7,�,�85:;5�m7,�,�85:�
< 
 = exp ����,-	���,-exp����,-	>, 
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so 
 

?��	 
 1@� A = exp ���2,�	��1,�exp���2,�	> · Cexp ���2,�	 ��1,�exp���2,�	D�
-$�  

 

= 
��� ∑ = exp��2�2,�	 ��1,�exp��2�2,�	��1,�exp��2�2,�	 �12,�2exp��2�2,�	 >�-$� . 

 
 

FIM now depends on measurement times and p.      � 
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Using F–1(p̂ ml) to characterize the uncertainty in p relies on the following daring approximations: 
 

• F–1(p* ) is substituted for Pml, although number of observations finite, and sometimes quite 

small, so p̂ ml is generally biased and Cramér-Rao does not apply. 

• F–1(p̂ ml) is substituted for F–1(p* ). 

 

Despites its shortcomings, this approach has the advantage of requiring far less computation than 
the alternative methods.  

 

Results are more credible insofar as 
 

• number of data points is large,  
• nonlinearity of the model in p is mild, 
• measurement errors are independently distributed and have small magnitudes. 
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Monte-Carlo methods 

 
 
Parameter estimation can be summarized as follows:  
 

  Experiment                          Estimation
System   Data ys   Estimate p̂ .  

 
 
Identical experiments yield different results, due to perturbations and noise.  
 
Before data collection, ys is thus a random vector, and so is p̂(ys) : 
 

Estimation
Random vectorys  Estimator p̂(ys).

 



 

Parameter Estimation in Physiological Models, Euro Summer School, Lipari, September 2009. 
18 

 

Actual measurements yield a particular realization of ys, with which a particular estimate 
p̂(ys)  is associated.  
 
Monte-Carlo methods aim to determine statistical characteristics of the population of 
estimates for all possible realizations of ys (i.e., all possible experimental results).  
 
Fictitious data vectors are generated for this purpose: 

 
         Perturbations

Run of model M(p̂)   Fictitious data ysf.  
 

 
Each ysf gives a fictitious estimate p̂ f = p̂(ysf) , computed as for real data.  
 

Estimation
{ ysf}   { p̂f},    
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Most often, p̂ f is taken to be a normal random vector, and its distribution is simply 
characterized by the empirical mean and covariance matrix of the fictitious estimates.  
 
This method thus requires a large number of estimations (and a fortiori of model runs).  
 
The generation of credible fictitious data requires a realistic model for the perturbations, as 
provided by (successful) maximum-likelihood estimation.  
 
 

Interesting as it is, this approach seems much too complicated to allow 
optimization of identifiability through experiment design (see Unit 3), 

and we shall not consider it further. 
 
The approach to be considered next is one of the ingredients that will allow bypassing the 
notion of identifiability (see Unit 4).  
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Bounded-error set estimation 
 
 
 
Two kinds of error cannot be avoided when estimating parameters from experimental data.  
 
The first corresponds to measurement errors or state perturbations.  
 
The second corresponds to structural errors, due to the fact that the model structure is at best 
an approximation of reality.  
 
When  
 

• the parameters to be estimated have a concrete meaning (knowledge-based models),  
• or decisions have to be based on their numerical values (prediction, diagnosis, control…)  

 
one should try to evaluate how these two types of error affect the estimates. 
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Usual statistical framework assumes the data corrupted by realizations of independent random 
variables:  
 

• Estimator obtained, e.g., by maximum-likelihood. 
• Quality of estimate characterized by taking advantage of properties of FIM.  

 
 
 
To already mentioned limitations, one may add that this is badly adapted to 

• structural deterministic errors, e.g., when a simple linear model is used to describe the 
behaviour of a complex nonlinear model, with perfectly repeatable deviations, 

• errors for which the hypothesis of mutual independence is not tenable, 
• errors for which only prior information is in the form of bounds. 

 
 
Bounded-error estimation partly overcomes these limitations.  
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Bounded-error estimation aims to characterize the set of all values of p such that the 
associated errors lie between given prior bounds.  
 
Consider, e.g., an output error 
 

ey(k, p) = y(k) – ym(k, p),   k = 1, … , nt, 
 
where y(k) is the kth scalar measurement, and ym(k, p) is the corresponding model output.  
 
Assume p to be feasible if and only if 
 EF���	 ≤ ey(k, p) ≤ EFG��	,   k = 1, … , nt, 
 
where the bounds EF���	 and EFG��	  are known a priori and differ.  
 
These bounds may come from technical specifications, empirical knowledge, or intuition.  
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We aim to characterize the set of all feasible values of p. 
 
Let nt be the set associated with the first nt data.  

 
Provided EF���	 ≠ EFG��	, the inequalities associated with the kth measurement can be put in the 
standard form: 
 

–1 ≤ �H��	 – ��HHHH��, �	 ≤ 1,  
with 
 �H��	 
 = 

2y(k) – eMy (k) – emy (k)
eMy (k) – emy (k)

      and     ��HHHH��, �	 = 
2

eMy (k) – emy (k)
  ym(k, p). 

 
 
We assume this transformation has been performed, and drop the upper bars.  
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The set of p values that satisfy the constraints associated with y(k) is then: 
 

k = {p I np | –1 ≤ y(k) – ym(k, p) ≤ 1}, 
 

nt is the intersection of the sets k (k = 1, … , nt). 
 

nt  
 

• is a set estimator,  
• may be empty if the hypotheses are wrong, 
• is guaranteed to contain p*  (if it exists). 

 
Size of nt is a measure of the uncertainty on p* . 
 
The algorithms used to characterize nt depend on whether M(·) is LP (more generally on whether 
the error is affine in the parameters).  
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LP model structures 

 
Consider an LP model structure, defined by 
 

ym(k, p) = rT(k)p, 
 
and an output error.  
 
Since regressor vector r (k) is assumed known, k is a strip in parameter space, bounded by parallel 
hyperplanes 
 

+ = {p I np | y(k) – rT(k)p = 1} 
and 

– = {p I np | y(k) – rT(k)p = –1}. 
 
 
As the intersection of such strips, nt is a convex polyhedron.  
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Provided the r (k)’s span np (condition for identifiability), nt is bounded, and thus a polytope. 
 

nt may become very complicated if nt and especially dim p are large.  
 
Hence the interest of constructing sets with simple shapes guaranteed to enclose nt.  
 
The most widely used are ellipsoids, orthotopes (boxes), parallelotopes and polyhedra with limited 
complexity (e.g., simplexes). 
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Recursive determination of outer ellipsoids 

 
Data taken into account one after the other to construct a succession of ellipsoids containing all 
values of p consistent with all previous measurements.  
 
This is easily implementable on-line (possibly in real time).  
 
After the first k – 1 observations, k–1 is characterized by the ellipsoid 
 

(p̂ k–1, Mk–1) = {p | (p – p̂ k–1)TM k––1 1(p – p̂ k–1) ≤ 1}, 
 
where p̂ k–1 is the centre, and Mk–1 a positive-definite matrix that specifies size and orientation.  
 
The volume of this ellipsoid is 
 

vol (p̂ k–1, Mk–1) = V(dim p) det Mk–1 , 
 
with V(dim p) the volume of the unit ball in parameter space.  
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Simple algorithms are available for computing p̂ k and Mk in such a way that  
 

(p̂ k, Mk) J (p̂ k–1, Mk–1) K  k J nt 
 
 

p
1

p2

Πk

Ek

Ek–1

 
 

One of them minimizes the volume of (p̂ k, Mk), which amounts to minimizing det Mk.  
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Non-recursive determination of outer boxes 

 
Determination of parameter uncertainty intervals for each components of p amounts to finding the 
smallest box with edges parallel to the axes enclosing nt.  
 
Complexity of resulting description of nt is moderate: 2np scalars for a box, versus  
np(np + 3)/2 scalars for an ellipsoid, where  np = dim p.  
 
The bounds of the ith parameter uncertainty interval are given by the minimal and maximal values 
of the cost j(p) = pi, when the feasible domain for p is nt, which is defined by linear inequalities.  
 
The cost and constraints being linear, these bounds can be computed by linear programming.  
 
Determination of the box thus requires solution of 2np linear-programming problems, with 2nt 
linear constraints each. 
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Exact description 

 
 
When the error is affine in p, nt can be written as 
 

nt = {p | Ap ≥ b}, 
 
and computed recursively.  
 
Each observation provides two inequalities, which are taken into account one after the other.  
 
 
The basic idea of the algorithm is as follows:  
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Assume that the polyhedron k–1 formed by the first (k – 1) inequalities is  
 
 

 

Q
k–1

1 2

3

4

5
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The only case deserving discussion is when the new inequality cuts into k–1: 
 
 

1 2

3

4

5

2’

3’

Qk

 
 
Important to keep track of adjacencies between vertices... 
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Non-LP model structures 

 
The rule for knowledge-based models.  
 
Posterior feasible set nt no longer a polyhedron, may be non-connected, even if model s.g.i. 
Phenomenon best understood in the space of observations.  
 

Y1
+ +

Sexp

y1
s

y2
s

Y2

y(t2)

y(t1)
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Set inversion 

Yields global results even in the case of non-LP model structures. See Unit 4 for more details.  
 
Assume posterior feasible set for p defined by 
 

nt = {p ∈ 0 | e(p) ∈ }, 
 
where 0 is a prior box in parameter space, and  is a given box in error space. Then 
 

nt = e–1( ) ∩ 0, 
 
where e–1 is the inverse function (in a set-theoretic sense) of the error function e.  
 
Determining nt is thus a set-inversion problem, to be solved though approximate but guaranteed 
computations.  
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p 2

p 1

Subpaving Kin  of all boxes that have been proved feasible

Subpaving Ki  of all boxes still indeterminate

Subpaving Kun of all boxes  that have been proved unfeasible

ŽPn t
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Conclusions 

 
A variety of techniques available to characterize parameter uncertainty.  
 
None can claim to be the best. 
 
Method based on the inverse of the FIM is the simplest and most economical, but only justified 
asymptotically, except in important but very particular cases.  
 
All methods rely on hypotheses that are not necessarily satisfied in practice, so one must be careful 
in interpreting their results.  
 
The experiment performed (location of sensors and actuators, shape of the inputs applied, 
measurement times…) affects the uncertainty in the parameters.  
 
Thus important to choose the experiment well, to maximize identifiability.  
 
This is experiment design, to be considered in Unit 3. 
 


