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Abstract:  
 
Before trying to estimate the parameters of a knowledge-based model from experimental data, 
one would like to make sure the exercise is not doomed from the start.  
 
This unit explains how the notion of prior identifiability can be used for this purpose.  
 
Methods that can be used to test linear and nonlinear knowledge-based models for prior 
identifiability are presented, and applied to actual biological and chemical models. 
 
More on the material presented here can be found in 
 
Eric Walter, Identifiability of State Space Models, Springer, Berlin, 1982. 
 
Eric Walter and Luc Pronzato, Identification of Parametric Models from Experimental Data, 
Springer, London, 1997.  
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Introduction 

(Mathematical) models may be built to: 
 

• understand, 
• estimate quantities for which no sensor is available, 
• test hypotheses, 
• teach, 
• predict behaviour, 
• control processes, 
• process signals 
• ...  

 

Whatever the aim, it should be made explicit (serendipity not an excuse). 
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System (or process) 
 
Part of universe considered as an entity. 

• We observe the output vector y. 
• We are interested in the vector z, which may differ from y. 
• We may act on the system by means of inputs, which form the vector u. 
• We endure the effect of perturbations, or noise n. 
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Model 

Rule to compute quantities we are interested in from what is available.  
 
Frequently,  
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Model often involves unknown (constant) quantities to be estimated.  
 
They form the parameter vector p.  
 
Model structure M(·) ≠ specific model M(p).  
 
Once M(·) has been selected, p must be estimated, using some optimality criterion.  
 
If several model structures compete for the description of the same data, their 
performance will also be compared with the help of a criterion. 
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Criterion 

The output error 
ey(t, p) = y(t) – ym(t, p) 

 
should be made as small as possible, in some sense. 
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Scale of values needed to quantify smallness.  
 
→ scalar function j(·) of the parameters and possibly of the structure, called the cost function.  
 
Example: 
 

��pppp� � � � square of error�pppp�
output components measurement times    

 

 
 
 
 
Cost must be optimized with respect to p. 
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Optimization  

A possible scheme (out of many) is 
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Before attempting the operation, we wish to make sure it is not doomed from the start.  
 
Notion of prior identifiability will provide a partial answer. 
 
 
 
Let us first distinguish  
 

• knowledge-based and behavioural models (schematic and simplistic but useful), 
• linear and nonlinear models (very important). 
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Knowledge-based and behavioural models 
 

Knowledge-based models built from basic principles, by writing down balance equations.  
 
Consider, for instance, the chemical reaction 
 

A B C
p

p

p1

2

3

 
 

If reactions obey first-order kinetics and reactor isothermal and well stirred, then 
 
 

 
d[A]
dt   = –p1[A] + p2[B],  

 
d[B]
dt   = p1[A] – (p2 + p3)[B],  

 
d[C]
dt   = p3[B]. 
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Model structure thus imposed by the prior knowledge (or hypotheses) about the system. 
 
Parameters pi are kinetic constants. 
 
State variables [A], [B] and [C] are concentrations.  
 
Parameters and state variables of knowledge-based models have a precise concrete meaning, 
so we usually wish to get accurate estimates of them.  
 
At the other hand of the spectrum, we have: 

 
Behavioural models, which merely approximate observed behaviour.  
 
Now prior knowledge required.  
 
Not even necessary to know what the inputs and outputs stand for.  
 
The parameters of behavioural models usually have no physical meaning.  
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For example, polynomial model 
 

ym(t, p) = p1 + p2t + p3t2 + p4t3 + ... 
 
can reproduce, with arbitrary precision, any finite set of experimental data 
 

y(ti), i = 1, … , nt, 
 
provided that polynomial degree large enough.  
 
Particularly simplistic example of a behavioural model.  
 
Behavioural models are in general simpler to simulate and more suited to control than 
knowledge-based models (easy to find counter examples, though).  
 
 
We shall be concerned here with knowledge-based models. 

 

  



 

Parameter Estimation in Physiological Models, Euro Summer School, Lipari, September 2009. 
14 

 

Linear and nonlinear models 

Two types of linearity must be distinguished.  
 
ym(t, p, u) � output at time t of M(p) when input u(τ), 0 ≤ τ ≤ t, has been applied from zero 
initial condition.  
 
M(·) is linear in its inputs (LI) if ym satisfies superposition principle with respect to u: 
 

∀ (λ, µ) � 2, ∀ t  �  +, ym(t, p, λu1 + µu2) = λym(t, p, u1) + µym(t, p, u2). 
 
 
When control engineers speak of linear models, they usually refer to this type of linearity.  
 
Moreover, they often assume implicitly that the model is time-invariant, i.e., that its 
behaviour is invariant under a translation of the origin of time. 
 

LI models are a (sometime very useful) approximations.  
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M(·) is linear in its parameters (LP) if ym satisfies superposition principle with respect to p: 
 

∀ (λ, µ)  �  2, ∀ t  �  +, ym(t, λp1 + µp2, u) = λym(t, p1, u) + µym(t, p2, u). 
 
When statisticians speak of linear models, they usually refer to this type of linearity. 

 
 

Extremely useful to know whether the model structure considered is LP or not, and LI or not 
 
���

�� � ���� ! �"#    is LI but not LP. 

 
 

Very many knowledge-based models are not LP!  
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Structural properties of models 

 
Once M(·) chosen, we wish to study its properties independently of the value taken by p.  
 
This could allow problem detection even before data collection.  
 
A property is structural (or generic) if it is true for almost any value of p.  
 
Thus, the probability of randomly picking an atypical value of p is zero.  
 
Two structural properties are of special importance for us: 
 

• identifiability 
• distinguishability.  
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Identifiability 
 
Can we hope to estimate a meaningful p̂ ? 
 
 

u(t)
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Such a vague question has no answer, so we consider an idealized framework, where  

•  process and model have the same structure,  
•  data are noise-free,  
•  input u and measurement times can be chosen at will. 

Always possible then to tune p̂ so as to make the model input-output behaviour identical to 
that of the process, which we denote by M(p* ) = M(p̂ ). 
 

+

u(t) Same structure
–

M(p̂)

M(p*)

ey ≡ 0

ym(t, p* , u)

zm(t, p* , u)

zm(t, p̂, u)

ym(t, p̂, u)
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We wish to know whether M(p* ) = M(p̂ ) implies p̂  = p* .  
 
More precisely, 
 

• Parameter pi is structurally globally (or uniquely) identifiable (s.g.i.) if for almost any p*  
in , 

 

M(p̂ ) = M(p* )  ( p̂ i = pi*  . 
 
 

• Structure M(·) is s.g.i. if all its parameters are s.g.i. 
 
 
When one cannot prove that M(.) is s.g.i., one may try to establish that it is at least locally 
identifiable.  
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• Parameter pi is structurally locally identifiable (s.l.i.) if for almost any p*  in , there 

exists a neighbourhood (p* ) such that  
 

p̂  � (p* )  and  M(p̂ ) = M(p* )  (  p̂ i = pi*  . 
 

[Local identifiability thus necessary for global identifiability.] 
 

• Structure M(·) is s.l.i. if all its parameters are s.l.i.  
 

• Parameter pi is structurally unidentifiable (s.u.i.) if for almost any p*  in , there is no 

neighbourhood (p* ) such that 
 

 p̂   �  (p* )  and  M(p̂ ) = M(p* )  (   p̂ i = pi*   
 
• Structure M(·) is s.u.i. if one at least of its parameters is s.u.i.  
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Dumb example: 
 
Let V be the difference of potential between the extremities of a resistor (input), and I be the 
resulting current through the resistor (output). With Ohm’s model 
 

) � * · + 
parameter R is s.g.i. 
 
If Ohm had been stupid enough to choose 
 

) � �cos *� · + 
 
then R would be s.l.i. With 
 

) � *� · *" · + 
 

*� and *� would be s.u.i.  
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REMARKS 

 
• Some parameters of an s.u.i. model may be s.l.i. or even s.g.i. 

• Identifiability may depend on the numerical value taken by p without the atypical 
region being of zero measure. Impossible then to reach a structural conclusion. 

• If the input and measurement times are fixed a priori, it suffices to replace M(p̂ ) = 
M(p* ) in the definitions by ym(p̂ ) = ym(p* ), where ym(p) stands for the vector 
obtained by concatenating all available output vectors ym(ti, p, u), i = 1, … , nt. 

 
 

Many methods available for testing models for structural identifiability.  
 
We shall only consider non-LP models (identifiability of LP models is a trivial matter), and 
start by methods for (time-invariant) LI models.  
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 Consider a structure M(·) described by 
 

d
dt  x = A(p)x + B(p)u ,  x(0) = x0(p), 

ym = C(p)x + D(p)u. 
 
(LI, not LP) 

 

Laplace-transform approach 

 
Eliminating state x from Laplace transform of previous equations, we get 

 
ym(s, p) = H1(s, p)u(s) + H2(s, p)x0(p), 

with  
H1(s, p) = C(p)[sI  – A(p)]–1B(p) + D(p) and H2(s, p) = C(p)[sI  – A(p)]–1. 
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M(p̂ ) = M(p* ) , ym(s, p̂ ) – ym(s, p* ) - 0   ∀ s, u(s). 
 
→ set of algebraic equations binding p̂  and p* .  
 
If for almost any p*  
 

• solution for p̂ is unique, then M(·) s.g.i.  
 

• set of solutions for p̂ is finite or denumerable, then M(·) s.l.i.  
 

• set of solutions for p̂ is not denumerable, then M(·) s.u.i.  
 
 
Any parameter that takes the same value in all solutions is s.g.i.  
 
Any parameter that takes its values in a finite or denumerable set is s.l.i. 
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Writing H1 and H2 in canonical form simplifies computation considerably.  
 
Then  
 
M(p̂ ) = M(p* ) , the coefficients of H1 and H2 have the same value for p = p̂  and p = p* .  
 
 
Canonical form for instance obtained by  
 

• writing each entry of the transfer matrix as a ratio of polynomials ordered in s,  
• simplifying numerator and denominator by GCD (only the controllable and observable 

part of the model remains), 
• setting the coefficient of the denominator monomial with highest (or lowest) degree in s 

equal to one.  
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EXAMPLE 

 
Consider the (LI, non-LP) compartmental model structure defined by 
 

 
d
dt  x1 = –(p1 + p2)x1 + p3x2 + u,      x1(0) = 0,  

 
d
dt  x2 = p1x1 – p3x2,  x2(0) = 0,  

 ym = x2. 
 
Take Laplace transform 
 

(s + p1 + p2)x1(s) = p3x2(s) + u(s), 
 

(s + p3)x2(s) = p1x1(s), 
 

ym(s) = x2(s). 
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Eliminate x1 and x2 to get 
 

(s + p1 + p2)(s + p3)ym(s) = p1p3ym(s) + p1u(s). 
 
Transfer function (in canonical form) is 
 

H1(s, p) = 
p1

s2 + s(p1 + p2 + p3) + p2p3
  . 

 
M(p̂ ) = M(p* ) therefore equivalent to 
 

p̂ 1 = p1*  , 

p̂ 2 + p̂ 3 = p2*  + p3*  , 

p̂ 2p̂ 3 = p2*  p3*  . 
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Now 

p̂ 1 = p1*  , 

p̂ 2 + p̂ 3 = p2*  + p3*  , 

p̂ 2p̂ 3 = p2*  p3*  , 
 
has two solutions for p̂ , namely 
 

p̂ 1 = (p1*  , p2*  , p3*  )T   and   p̂ 2 = (p1*  , p3*  , p2*  )T. 
 
 
First parameter, which takes the same value in the two solutions, is s.g.i.  
 
The other two, which each can take two values, are only s.l.i.  
 
From noise-free data, possible to compute the true value for p1, whereas two possible values 
will be obtained for p2 and p3. 
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REMARKS 

 

• With an iterative local optimization algorithm, we would (at best) have found either of 
the two solutions. We can now generate the other. 

• If p*  such that p1 = 0, then output is identically zero whatever the input, so p2 and p3 
become unidentifiable. These parameters are nevertheless s.l.i., for p1 = 0 is atypical. 

• Since model not s.g.i., impossible to reconstruct state uniquely from the knowledge of 
input-output behaviour. Depending on the model selected, two possible values for x1 will 
be obtained.  

• More generally, if the vector z of the quantities of interest depends on state variables that 
are not measured, important to make sure that model is s.g.i., or at least that 

 

M(p̂ ) = M(p* ) ( zm(t, p̂ , u) - zm(t, p* , u). 
 
• The existence of a true value of the parameters need not be assumed; p*  may be the 

parameter vector of a model generating a satisfactory input-output behaviour.  
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Note: If model only to be used for prediction or control of 
process output, with no constraint on quantities that cannot be 

measured directly, then identifiability is not an issue. 
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Similarity transformation approach 

Assume “process” M(p* ) described by 
 

d
dt  x

*  = A(p* )x*  + B(p* )u,  x* (0) = x0(p* ), 

ym = C(p* )x*  + D(p* )u. 
 

Let x̂  = Tx* , with T invertible. Then  
 

d
dt x̂ = TA (p* )T–1x̂ + TB(p* )u,  x̂(0) = Tx0(p* ),

ym = C(p* )T–1x̂ + D(p* )u,
  

 
will have the same input-output behaviour as M(p* ). It will correspond to an M(p̂ ) if and 
only if 
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





 A(p̂) = TA (p* )T–1,

 B(p̂) = TB(p* ),

 C(p̂) = C(p* )T–1,

 D(p̂) = D(p* ),

 x0(p̂) = Tx0(p* ),

  

 
which is a sufficient set of conditions for M(p̂ ) = M(p* ). It turns out to be also necessary, 
provided that M(p* ) be observable and controllable (assumed here).  
 
Structural identifiability of M(·) can then be tested by looking for all solutions for (p̂ , T). 
  
If for almost any p*  

• only solution is (p̂ , T) = (p* , I ), then M(·) is s.g.i.  
• set of solutions for p̂  is finite or denumerable, then M(·) is s.l.i. 
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EXAMPLE (CONTINUED) 

State and observation equations are such that 
 

A(p) = 






–(p1 + p2) p3

p1 –p3
 ,   B(p) = 







1

0
 ,    x(0) = 0, 

 
C(p) = [ ]0 1  ,   D(p) = 0. 

 
M(·) structurally controllable and observable, so similarity transformation approach applies.  
 
Zero initial conditions bring no information on T.  
 
Exploit first the structures of B and C, with tik = [T]ik: 
 

C(p̂ )T = C(p* ) . t21 = 0, t22 = 1, 

B(p̂ ) = TB(p* ) ( t11 = 1. 
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So 

T(α) = 






1 α

0 1
 . 

 
The set of all possible matrices A satisfies 
 

A(p̂ ) = T(α)A(p* )T–1(α) = 






–(p*1 + p*2) + αp*1 α(p*1 + p*2) + p*3 – α2p*1 – αp*3

p*1 –αp*1 – p*3
 . 

 
In A(p̂ ), the sum of the terms of the second column must be equal to zero, so 
 

α2p*1  + α(p*3  – p*2 ) = 0. 
 
This equation has two solutions for α, namely 

α = 0   and   α  =  
p*2 – p*3

p*1
 . 
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α = 0   (   T = I ,  p̂  = p* and α = 
p*2 – p*3

p*1
    .   T ≠ I ,  p̂  = 









p*1

p*3

p*2

 . 

 
Same conclusion as with Laplace-transform approach: M(·) is s.l.i.; only p1 is s.g.i., p2 and p3 
can be exchanged without modifying the input-output behaviour.  
 
Even from noise-free data, impossible to estimate p*  and x*  uniquely, but all their possible 
values can now be computed. 

 

REMARK 

Although conclusion does not depend on method, the required computations do.  
 
Depending on the example considered, one or the other approach may turn out to be much 
simpler. 
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The methods to be considered now also apply to non-LI models. 
 
 

Taylor series approach 

Assume M(·) described by 
 

d
dt  x(t) = f[x(t), u(t), t, p],    x(0) = x0(p),    ym(t, p) = h[x(t), p], 

 
where f and h are infinitely continuously differentiable.  
 
Let  

ak(p) = lim�012
dk 
d�5 ym(t, p). 

 
M(p̂ ) = M(p*) . ak(p̂ ) = ak(p*),   k = 0, 1, … 

 
  



 

Parameter Estimation in Physiological Models, Euro Summer School, Lipari, September 2009. 
37 

 

A sufficient condition for M(·) to be s.g.i. is therefore  
 

ak(p̂ ) = ak(p*), k = 0, 1, … , kmax,   (   p̂  = p* , 
 
with kmax small enough for the computation to remain tractable. 

 

EXAMPLE 

Consider the matrix of all impulse responses of a LI state-space model (with D = 0) 
 

Ym(t, p) = C(p)exp[A(p)t]B(p). 
Since 

lim�012
dk 
d�5 Ym(t, p) = C(p)Ak(p)B(p), 

 
the Taylor series approach amounts to testing identifiability from identity of the Markov 
parameters 
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C(p̂ )Ak(p̂ )B(p̂ ) = C(p*)Ak(p*)B(p*), k = 0, 1, … , kmax, 
 
a method that usually turns out to be more complicated than the Laplace transform and 
similarity transformation approaches. 
 
 

EXAMPLE 

Consider now the unforced non-LI structure M(·) defined by 
 

d
dt  x = 







–p1x1 – p2(1 – p3x2)x1

p2(1 – p3x2)x1 – p4x2
 ,   x(0) = 







1

0
 , ym(t, p) = x1. 
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Successive derivatives of ym at t = 0+ satisfy 
 

a0(p) = 1, 
a1(p) = –(p1 + p2), 

a2(p) = (p1 + p2)2 + p2
2 p3, 

a3(p) = –p2
3 p3

2  – 4 p2
2 p3(p1 + p2) – p2

2 p3p4 – (p1  + p2)3, 
… 

and  
ak(p̂ ) = ak(p*),  k = 1, 2, … , 5,  .  p̂  = p*. 

 
M(·)  is therefore s.g.i. 

 

REMARK 

If p3 is set to zero, the model becomes LI and s.u.i. (LI models tend to be less identifiable 
than their non-LI counterparts!) 
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Local state isomorphism approach 

 
Extends similarity transformation approach to non-LI models. 
 
Assume M(·) defined  by 
 

d
dt  x(t) = f[x(t), p] + u(t)g[x(t), p],     x(0) = x0(p),     ym(t, p) = h[x(t), p], 

 
where f, g and h are analytic, u is a measurable bounded function and M(p) is locally reduced 
at x0(p) for almost any p (which corresponds to a notion of observability and controllability). 
 
Let x* be the state of M(p*) and x̂  that of M(p̂ ).  
 
M(p*) and M(p̂ ) will have the same input-output behaviour for any u up to some t1 > 0 if and 
only if there exists a local state isomorphism: 0*  0 n, x* 0 x̂  = φφφφ(x*) such that  
  



 

Parameter Estimation in Physiological Models, Euro Summer School, Lipari, September 2009. 
41 

 

for any x*  in the neighbourhood 0*  of x0(p*)  
 

φ φ φ φ is a diffeomorphism:      rank 
∂φφφφ(x)
∂xT  |x=x* = n,  (i) 

 

initial states correspond:   φφφφ(x0*  ) = x̂ 0,   (ii) 
 

drift terms correspond:                    f(x̂ , p̂ ) = f[φφφφ(x*), p̂ ] = 
∂φφφφ(x)
∂xT  |x=x* f(x* , p*), (iii) 

 

control terms correspond:             g(x̂ , p̂ ) = g[φφφφ(x*), p̂ ] = 
∂φφφφ(x)
∂xT  |x=x*  g(x* , p*), (iv) 

 
observations correspond:                               h(x̂ , p̂ ) = h[φφφφ(x*), p̂ ] = h(x* , p*). (v) 

 
After checking that M(p) is locally reduced at x0(p), one can look for all solutions for p̂  and 
φφφφ of (i) – (v).  
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If for almost any p*  the only possible solution is p̂  = p*  and φφφφ(x*) = x* , then M is s.g.i. 
 
May involve fairly complicated computation first to check that M(p) is locally reduced and 
then to solve (i) – (v) for p̂  and φφφφ.  
 
 
But 

If there exists p0 such that M(p0) is LI, controllable and observable, then M(·) is locally 
reduced at x(0) = 0. 
 
If 
 

• the components of f and g are polynomials in x parametrized by p  
• and h[x(t, p), p] = C(p)x(t, p), 

 
then φφφφ is a linear transformation x̂  = Tx*, which drastically simplifies calculations.   
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Conditions (i) – (v) then become 
 

det T ≠ 0, (i’) 
 

Tx0(p*) = x0(p̂ ), (ii’) 
 

f(Tx* , p̂ ) = Tf (x* , p*), (iii’) 
 

g(Tx* , p̂ ) = Tg(x*, p*), (iv’) 
 

C(p̂ )T = C(p*). (v’) 
 
 
For LI models also, the local isomorphism is a linear transformation, and the method reduces 
to the similarity transformation approach. 
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EXAMPLE 

Consider the non-LI structure M(·) defined by 
 

d
dt  x = 







–p1x1 – p2(1 – p3x2)x1

p2(1 – p3x2)x1 – p4x2
  + 







1

0
  u,   x(0) = 0,   ym(t, p) = x2 = [ ]0 1   x. 

 
Trivial to check that when p3 = 0 the structure becomes LI and structurally controllable and 
observable, so M is structurally locally reduced and the local state isomorphism approach 
applies.  
 
M(·)  is polynomial, so φφφφ(x) = Tx, and Conditions (i’) – (v’) express that M(p*) = M(p̂ ).  
 
Condition (ii’) brings no information on T. Conditions (iv’) and (v’) imply that T can be 
written as 

T(α) = 






1 α

0 1
 . 
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Condition (iii’) then translates into 
 

f(Tx* , p̂ ) = 








–p̂1(x*1 + αx*2) – p̂2(1 – p̂3x*2)(x*1 + αx*2)

p̂2(1 – p̂3x*2)(x*1 + αx*2) – p̂4x*2
  

 

= Tf (x* , p*) = 






1 α

0 1
 






–p*1x*1 – p*2(1 – p*3x*2)x*1

p*2(1 – p*3x*2)x*1 – p*4x*2
 . 

Second row equivalent to 
 

–αp̂ 2p̂ 3x*2 2 + (p*2 p*3  – p̂ 2p̂ 3)x*1 x*2  + (p̂ 2 – p*2 )x*1  + (p*4  + αp̂ 2 – p̂ 4)x*2  = 0. 
 
Must hold true for any x*  around 0 and almost any p* , so p̂ 2 = p*2 , p̂ 3 = p*3 , α = 0 and p̂ 4 = 
p*4 .  
 
Processing first row in the same manner proves that p̂ 1 = p*1 , so M(·) s.g.i. 
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Use of elimination theory 

 
Computer-algebra software such as MAPLE can be used to  
 

• get equations expressing M(p̂ ) = M(p*) 
• solve them.  

 
Equations can often be put into the form of sets of polynomial equations in several unknowns, 
which can be transformed into triangular ones with the help of elimination theory.  
 
These sets of triangular equations can then be solved by considering a sequence of single-
variable polynomials.  
 
Since p is assumed to belong to np, one should only consider real solutions, which may 
complicate the matter. 
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Differential algebra, in which differentiation is added to the classical axioms of algebra, 
makes it possible to use a similar approach to eliminate state variables.  
 
When differential input-output relations can thus be obtained, they can be used to study 
identifiability.  
 

EXAMPLE 

Volmer-Heyrovski mechanism used in electrochemistry to describe the production of gas or 
the dissolution of metals: 
 

d
dt  x(t) = k1(t)[1 – x(t)] – k2(t)x(t),      x(0) = 

k1(0)
k1(0) + k2(0) , 

 
k1(t) = p1 exp[p2u(t)],      k2(t) = p3 exp[p4u(t)], 

 
ym(t) = k1(t)[1 – x(t)] + k2(t)x(t). 
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Differentiate observation equation with respect to time, to get  
 

dym

dt   = 
dk1

dt  (1 – x)  + 
dk2

dt   x + (k2 – k1) 
dx
dt . 

 
Replace dx/dt by its value as given by the state equation and multiply the result by (k2 – k1) so 
as to use the observation equation to eliminate x and get the input-output equation 
 

(k2 – k1)
dym

dt   + [
dk1

dt   – 
dk2

dt   + k2
2  – k1

2 ] ym = 
dk1

dt  k2 – k1
dk2

dt   + 2k1k2(k2 – k1), 

 
with the initial condition 

ym(0) = k1(0)[1 – x(0)] + k2(0)x(0) = 2 
k1(0)k2(0)

k1(0) + k2(0) . 

 
Exchanging k1 and k2 (i.e. (p1, p2) and (p3, p4)) leaves y(0) unchanged and multiplies both 
sides of the input-output equation by (–1). M(·) is therefore not s.g.i. 
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Finally, consider a model defined by a set of relations 
 

rk(ym, u, x, p) = 0,  k = 1, … , nr, 
 
where the rk’s are polynomial functions of u, ym and x and their derivatives with respect to 
time and polynomial functions of p.  
 
Any uniquely identifiable parameter pk is the solution of a linear equation  
 

akpk = bk, 
 
where ak and bk are polynomial functions of the inputs, outputs and their derivatives with 
respect to time.  
 
Computing ak and bk can therefore be used to prove the global identifiability of pk. 
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Numerical local approach 

 
The computations required by algebraic approaches prove sometimes too complex.  
 
The following method can then be used to check whether M(·) is (at least locally) identifiable.  

• Randomly pick p0 in  and simulate M(p0) with a high precision to get fictitious data yf. 
• Estimate p from yf by minimizing a quadratic cost in the output error with a second-

order method such as Newton or Gauss-Newton initialized at p0.  

• If p̂ k remains stable at p0, then M is s.l.i.  
• If the estimator is unstable, this may have many causes. Other nominal values p0 should 

be picked before reaching a conclusion.  
 
Optimization algorithms that incorporate a regularization procedure (such as Levenberg-
Marquardt) cannot be used for testing local identifiability. 

More sophisticated local numerical approaches can be used to study the local dependencies 
between unidentifiable parameters. 
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Distinguishability  
 
 
When hesitating between model structures, natural to ask whether the measurements will 
make it possible to decide which one is the best.  
 
This question of distinguishability receives a partial answer in the same idealized framework 
as identifiability.  
 
Assume the “process” is a model with structure M(·) while its “model” has the structure 67�·�, 
which now differs from M(·).  
 
Let p̂ be the parameter vector associated with 67�·�, and p be the one associated with M(·).  
 

It may be impossible to tune p̂  so that M̂(p̂)  = M(p). It is this impossibility that may permit 
the elimination of 67�·� in favour of M(·). 
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+

–
u(t) ey

Differing structures

^ym(t, p, u)^M̂(p̂)

M(p) ym(t, p, u)

 
 

 

 
67�·� is structurally distinguishable (s.d.) from M(·) if, for almost any feasible value of p, 
there is no feasible value of p̂  such that M̂(p̂)  = M(p). 
 
If 67�·� is s.d. from M(·) and vice versa, then M(·) and 67�·� are said to be s.d. 
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The techniques to test pairs of model structures for distinguishability are similar to those used 
for identifiability.  
 
One now hopes to prove the non-existence of a solution for p̂ , whereas in identifiability 
studies one hoped to prove the uniqueness of this solution. 

 

EXAMPLE 

 
M(·)  defined by 
 

  
d
dt  x1 = –(p1+p2)x1 + p3x2 + u,   x1(0) = 0,  

  
d
dt  x2 = p2x1 – p3x2,   x2(0) = 0,  

  ym = x1, 
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competes with 67�·� defined by 
 

  
d
dt x̂ 1 = –p̂ 2x̂ 1 + p̂ 3x̂ 2 + u,   x̂ 1(0) = 0,  

  
d
dt x̂ 2 = p̂ 2x̂ 1 – (p̂ 1 + p̂ 3)x̂ 2,   x̂ 2(0) = 0,  

  ŷ m = x̂ 1. 
 
Associated transfer functions, in the same canonical form: 
 

 H(s, p) = 
s + p3

s2 + s(p1 + p2 + p3) + p1p3
        and      Ĥ(s, p̂)  = 

s + p̂1 + p̂3

s2 + s(p̂1 + p̂2 + p̂3) + p̂1p̂2
 . 

 

M̂(p̂)  = M(p) thus translates into 
p̂ 1 + p̂ 3 = p3, 

p̂ 1 + p̂ 2 + p̂ 3 = p1 + p2 + p3, 

p̂ 1p̂ 2 = p1p3. 
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For any p, possible to find p̂  such that these equations are satisfied, and vice versa.  
 
M(·) and 67�·� are therefore structurally indistinguishable.  
 
Impossible to know whether the structure chosen was right.  
 
A possible way of removing ambiguity would be to monitor x2.  
 
 

REMARKS 

 

• As for identifiability, there are cases where no structural conclusion can be drawn.  
• Easy to prove that identifiability of two structures is neither necessary nor sufficient for 

their distinguishability.  
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Chemical engineering example 
 

Bellows 
pump

Vector gas (helium)

100 ml/min

Reactant feed 
1 ml/min

Reactor

To mass 
spectrometer

6000 ml/min

Syringe

Trolley

 

 
used to study reaction               CO + 3 H2  8 CH4 + H2O. 
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Prior considerations suggest two competing model structures: 
 
M(·) defined by 
 

  C1
d
dt  x1 = –(V + ve)x1 + vex2 + Vu,  

  C2
d
dt  x2 = vex1 – vex2,  

  C3
d
dt  x3 = Vx1 – Vx3,  

  C4
d
dt  x4 = Vx3 – Vx4,  

  ym = x4,  
 
where the parameters to be estimated are p = (C1, C2, C3, ve)T, and where V and C4 are 
known from independent measurements. 
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67�·� defined by 
 

  C1
d
dt x̂ 1 = –Vx̂ 1 + Vu,  

  C2
d
dt x̂ 2 = v1x̂ 1 – v1x̂ 2,  

  C3
d
dt x̂ 3 = (V – v1)x̂ 1 + v1x̂ 2 – Vx̂ 3,  

  C4
d
dt x̂ 4 = Vx̂ 3 – Vx̂ 4,  

  ŷ m = x̂ 4,  
 
where the parameters to be estimated are p̂  = (C1, C2, C3, v1)T. 
 
The state variables xi and x̂ i (i = 1, … , 4) are specific activities (percentages of labelled 
atoms), the Ci (i = 1, … , 3) are surface concentrations and ve and v1 are flow rates of carbon 
atoms between adsorbed species.  
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All parameters and state variables therefore have a concrete meaning.  
 
 
With the help of the Laplace-transform approach, the following conclusions can be reached: 

• M and M̂  are structurally indistinguishable, 
• M is s.l.i. but not s.g.i. (three parameter vectors correspond to the same i/o behaviour), 

• M̂  is s.l.i. but not s.g.i. (six parameter vectors correspond to the same i/o behaviour). 

 

One thus knows before any measurement that it will not be possible to find a best structure 
and unique best model within this structure.  

Such model structures may nevertheless be of interest, provided that their ambiguous nature is 
recognized and taken into account. 
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Conclusions 

 
Choosing a suitable model structure is not an exact science.  
 
Testing structural properties, one can detect possible defects of the model structures 
considered even before data are available. 
 
Identifiability is important when the parameters or state variables to be estimated have a 
concrete meaning or when decisions are to be taken on the basis of their numerical values. 
 
The questions considered so far receive qualitative answers (yes / no / I do not know). 
 
This raises a quantitative question: if M(·) is identifiable, what experiment should one 
perform to estimate its parameters as precisely as possible?  
 
A first step will be to quantify identifiability. This is the subject of Unit 2. 


