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Abstract: Interval analysis was initially developed to analyze and control numerical errors in
computers. It can now be used to solve problems that are at the core of nonlinear parameter
estimation, such as the minimization of possibly nonconvex cost functions or the charac-
terization of sets defined by nonlinear inequalities. The solutions obtained are approximate
but guaranteed, in the sense that no solution can be lost, a definite advantage over the usual
local iterative techniques. After recalling basic concepts of interval analysis, this introductory
paper describes algorithmic tools that can be used for nonlinear parameter estimation and
applies them to simple illustrative examples drawn from compartmental modeling, a formal-
ism widely used in biology. Guaranteed numerical integrators and properties of cooperative
systems make it possible to deal with differential models, even when they do not admit closed-
form solutions. Pointers to freely downloadable software are provided.
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1. INTRODUCTION

When the vector p of the parameters of a model has to
be estimated from experimental data by minimizing
a cost function that is quadratic in p, for instance
because this cost function is quadratic in an error that
is itself affine in p, it is well known that an explicit
expression for the optimal estimate p̂ as a function
of the data can be derived, and that, under suitable
hypotheses on measurement noise, it is possible to
compute the covariance matrix of this estimate and
thus to assess its uncertainty. Although this is an im-
portant special case, it is far from covering all situa-
tions of interest. Most knowledge-based models, for
instance, have outputs that are nonlinear in their pa-
rameters, which usually makes it impossible to obtain
such explicit estimates. Iterative local optimization
procedures are then employed, which can provide no
guarantee as to their results.

The purpose of this paper is to show how interval
analysis, initially developed to analyze and control
numerical errors in computers (Moore, 1959), al-
lows such guaranteed results to be obtained in non-
linear parameter estimation. Interval analysis can in-
deed be used to solve sets of nonlinear equations
or inequalities or to minimize nonconvex cost func-
tions (Moore, 1979), (Ratschek and Rokne, 1988),
(Neumaier, 1990), (Hansen, 1992), (Hammer et al.,
1995), (Kearfott, 1996). Numerical solutions are pro-
vided under the form of sets guaranteed to contain
all actual solutions of the initial mathematical prob-
lem, which is a considerable advantage over the usual
numerical methods that deliver point estimates by it-
erative local refinement of some initial guess. The
basic concepts of interval analysis will be presented
first. Some tools based on interval analysis and es-
pecially relevant for nonlinear parameter estimation
will then be described and applied, before provid-
ing pointers to freely downloadable software. To sim-



plify presentation and save space, many details will
be skipped, for instance on how interval computation
can be implemented in a guaranteed way even when a
floating-point representation of real numbers is used.
Much more information may be found in (Jaulin et
al., 2001b).

2. BASIC CONCEPTS

An interval is a connected subset of R. Here, it will
be assumed to be closed and bounded, but open-ended
and unbounded intervals may also be considered. Let
IR be the set of all closed intervals. Denote the lower
bound of [x] ∈ IR by x or lb([x]), and its upper bound
by x or ub([x]), so

[x] = {x ∈ R | x 6 x 6 x}.

The width of [x] is

w([x]) = x− x,

and its midpoint (or center) is

mid([x]) =
x+ x

2
.

When x and x are equal, [x] is said to be degenerate.
Any real number can thus be represented as a degen-
erate interval. A closed interval is entirely defined by
its lower and upper bounds, so these intervals have a
dual nature: they may be viewed as sets, to which set-
theoretic operations such as intersection, union and
Cartesian product apply, and as pairs of real numbers,
on which an arithmetic can be built.

2.1 Operations on intervals

The intersection of two intervals

[x]∩ [y] = {z ∈ R | z ∈ [x] and z ∈ [y]}

is always an interval (provided that the empty set is
considered as one). The union of two intervals

[x]∪ [y] = {z ∈ R | z ∈ [x] or z ∈ [y]}

is not necessarily an interval, hence the definition of
the interval union of [x] and [y], denoted by [x]t [y],
which is the smallest interval that contains [x]∪ [y].
The Cartesian product of intervals is an interval vector
(or box), see the next column.

Addition, subtraction, multiplication and division can
be extended to intervals according to

[x]� [y] = [{x� y ∈ R | x ∈ [x] and y ∈ [y]}] , (1)

where �∈ {+,−, ·,/} and where [S] is the interval hull
of the set S, i.e., the smallest interval that contains
it. In (1), [x] and [y] are treated as corresponding
to independent variables x and y, which is a major
source of pessimism. For instance, [x] − [x] is not
equal to [0,0], unless [x] is degenerate. Addition and
multiplication remain associative and commutative,

but multiplication is no longer distributive with respect
to addition. Instead

[x] · ([y]+ [z])⊂ [x] · [y]+ [x] · [z],

a property known as subdistributivity. As a result, it is
recommended to factorize expanded forms as much as
possible, to make the width of the interval results as
small as possible. For nonempty intervals,

[x]+ [y] = [x+ y,x+ y],

[x]− [y] = [x− y,x− y],

[x] · [y] = [min{xy,xy,xy,xy}, max{xy,xy,xy,xy}],

and if 0 /∈ [y] then

[x]/[y] = [x] · [1/y,1/y].

(Specific formulas involving unbounded intervals are
available for division by an interval containing zero.)
When applied to degenerate intervals, these rules sim-
plify into those of real arithmetic, of which interval
arithmetic can thus claim to be an extension.

The interval counterpart [ f ]∗ of a function f from R to
R satisfies

[ f ]∗ ([x]) = [{ f (x) | x ∈ [x]}] .

For any continuous function, [ f ]∗ ([x]) is thus equal
to the image set f ([x]). Elementary interval functions
can be expressed in terms of bounds. This is especially
simple for monotonic functions. For instance, for any
nonempty [x],

[exp]∗([x]) = [exp(x),exp(x)].

For nonmonotonic functions, the situation is more
complicated. For example, [sin]∗([0,π ]) = [0,1], which
differs from [sin(0),sin(π)] = [0,0], and specific algo-
rithms had to be built for trigonometric and hyperbolic
functions.

An interval vector (or box) [x] is a Cartesian product
of intervals. It will be written indifferently as

[x] = [x1]× [x2]×·· ·× [xn],

or
[x] = ([x1], [x2], . . . , [xn])

T.

The set of all n-dimensional boxes will be denoted by
IR

n. Nonempty boxes of IR
n are n-dimensional axis-

aligned parallelepipeds. Most notions introduced for
intervals extend without difficulty to boxes. The lower
bound of [x] ∈ IR

n is the vector of the lower bounds
of its interval components:

x = (x1,x2, · · · ,xn)
T .

Similarly, the upper bound of [x] is

x = (x1,x2, · · · ,xn)
T .

The width of [x] is

w([x]) = max
16i6n

w([xi]).

Its midpoint (or center) is

mid([x]) = (mid([x1]), . . . ,mid([xn]))
T.

The interval hull [S] of a subset S of R
n is the smallest

box of IR
n that contains it.



The intersection of the boxes [x] and [y] of IR
n satis-

fies

[x]∩ [y] = ([x1]∩ [y1])× . . .× ([xn]∩ [yn]),

provided that it is nonempty. Most often the union of
two boxes [x] and [y] is not a box. Its interval hull can
be computed as

[x]t [y] = ([x1]t [y1])× . . .× ([xn]t [yn]).

The test for the inclusion of [x] in [y] can be performed
componentwise, since

[x] ⊂ [y] ⇔





[x1] ⊂ [y1],
...

[xn] ⊂ [yn].

Classical operations on vectors trivially extend to in-
terval vectors. For instance, if α ∈ R,

α [x] = (α [x1])×·· ·× (α [xn]) ,

[x]T · [y] = [x1] · [y1]+ · · ·+[xn] · [yn],

[x]+ [y] = ([x1]+ [y1])×·· ·× ([xn]+ [yn]) .

Interval matrices can be similarly defined, and the
notions of lower and upper bounds, width, midpoint
and interval hull extend as for boxes. If [A] and [B]
are intervals, interval vectors or interval matrices of
appropriate dimensions and if � is a binary operator,
then

[A]� [B] = [{A�B | A ∈ [A] and B ∈ [B]}] .

For example, if [A] and [B] are in IR
n×n then

[A] · [B] =

(
n

∑
k=1

[aik] · [bk j]

)

16i6n,16 j6n

.

More sophisticated operations such as matrix inver-
sion and the computation of eigenvalues and eigenvec-
tors raise difficulties that go beyond this introductory
paper. See (Neumaier, 1990) for details.

2.2 Inclusion functions

Let f be a function from R
n to R

m, which may be
defined by an algorithm or even by a differential
equation. The interval function [f] from IR

n to IR
m

is an inclusion function for f if

∀ [x] ∈ IR
n, f([x]) ⊂ [f] ([x]) .

The image set f([x]) may have any shape. It may be
nonconvex, or even disconnected if f is discontinuous.
Whatever this shape, an inclusion function [f] of f
makes it possible to compute a box [f]([x]) guaranteed
to contain f([x]). Actually this box may offer a very
pessimistic vision of f([x]), but since it is far easier to
manipulate boxes than generic sets, this is a very in-
teresting tool for studying functions. One of the main
challenges of interval analysis is to provide inclusion
functions that can be evaluated quickly while keeping
[f] ([x]) as small as possible.

An inclusion function [f] for f is convergent if, for any
sequence of boxes [x]k,

lim
k→∞

w([x]k) = 0 ⇒ lim
k→∞

w([f]([x]k)) = 0.

It is minimal if for any [x], [f] ([x]) is the smallest box
that contains f([x]). The minimal inclusion function
for f is unique and will be denoted by [f]∗, as it
corresponds to the interval counterpart of f. [f] is
inclusion monotonic if

[x] ⊂ [y] ⇒ [f]([x]) ⊂ [f]([y]).

A minimal inclusion function is inclusion monotonic
but not necessarily convergent (because f may be
discontinuous). A convergent inclusion function may
not be inclusion monotonic.

The construction of inclusion functions for f can be
cast into that of inclusion functions for each of its
coordinate functions. This is why we shall focus at-
tention on getting inclusion functions for real-valued
functions f : R

n → R. The first idea that comes to
mind is to perform two optimizations to compute
the infimum and supremum of f over the box [x]
of interest. At least in principle, one should thus
get the smallest interval containing f ([x]), denoted
by [ f ]∗([x]). However, these optimization problems
themselves turn out to be far from trivial in general.
An alternative and much more tractable approach is
as follows. Consider a function f expressed as a fi-
nite composition of the operators +,−, ·,/ and ele-
mentary functions sin,cos,exp, sqrt. . . An inclusion-
monotonic inclusion function [ f ] : IR

n → IR for f
is obtained by replacing each real variable xi by an
interval variable [xi] and each operator or elementary
function by its interval counterpart. The result is called
the natural inclusion function of f . If f involves only
continuous operators and continuous elementary func-
tions, then [ f ] is convergent. If, moreover, each of the
variables x1, . . . ,xn occurs at most once in the formal
expression of f then [ f ] is minimal. Unfortunately,
natural inclusion functions are not minimal in general,
and their performance strongly depends on the formal
expression of f , as illustrated by the next example.

Consider the following three formal expressions of the
same function f :

f1(x) = x(x+2),

f2(x) = x2 +2x,

f3(x) = (x+1)2−1.

At [x] = [−1,1], their natural inclusion functions take
the values

[ f1] ([x]) = [x] ([x]+2) = [−3,3] ,

[ f2] ([x]) = [x]2 +2 [x] = [−2,3] ,

[ f3] ([x]) = ([x]+1)2 −1 = [−1,3] .

[ f2] is less pessimistic than [ f1] because it takes advan-
tage of the fact that the lower bound of a square cannot
be negative. Since x occurs only once in f3 and f3 is



continuous, [ f3] is minimal. Thus [ f3] ([x]) = f ([x]) =
[−1,3].

Natural inclusion functions are not always to be rec-
ommended. Their efficiency depends strongly on the
number of occurrences of each variable, which is often
difficult to reduce. An important field of investigation
of interval analysis (Ratschek and Rokne, 1984) has
thus been to propose other types of inclusion function
that might provide less pessimistic results, such as
those now briefly described.

Assume that f is differentiable over [x], and denote
mid([x]) by m. The mean-value theorem then implies
that

∀x ∈ [x] ,∃z ∈ [x] such that

f (x) = f (m)+gT (z) · (x−m) ,

where g is the gradient of f . Thus,

∀x ∈ [x] , f (x) ∈ f (m)+ [gT] ([x]) · (x−m) ,

where [gT] is an inclusion function for gT, so

f ([x]) ⊂ f (m)+ [gT] ([x]) · ([x]−m) .

Therefore, the interval function

[ fc] ([x]) = f (m)+ [gT] ([x]) · ([x]−m)

is an inclusion function for f , called its centered in-
clusion function. This function becomes especially in-
teresting when the width of [x] is small, because the
pessimism resulting from the interval evaluation of
[g]([x]) is reduced by the scalar product with [x]−m,
which is a small interval centered on zero. The cen-
tered inclusion function can be significantly improved
at the cost of a slightly more complicated formulation
(Hansen, 1968). Iterating the reasoning that led to the
centered inclusion function, one may think of using a
Taylor series expansion to approximate f at a higher
order. This leads to the second-order Taylor inclusion
function

[ f ]T([x]) = f (m)+gT(m) · ([x]−m)

+ 1
2([x]−m)T · [H]([x]) · ([x]−m),

where [H] is an inclusion function for the Hessian
matrix of f .

The convergence rate of a natural inclusion function is
at least linear, whereas those of the centered and Tay-
lor inclusion functions are at least quadratic provided
that the Taylor inclusion function is based on an ex-
pansion to order k > 2. Quadratic convergence looks
more interesting than linear convergence, but it should
be remembered that it only means that more accurate
results will be obtained in the case of infinitesimal
boxes. Nothing similar can be said on the behavior
of these inclusion functions for large boxes. To the
contrary, when the box involved is large enough, the
natural inclusion function is often more satisfactory
than the centered and Taylor inclusion functions. No
approach to building an inclusion function can thus

claim to be uniformly the best, and a compromise be-
tween complexity and efficiency must often be struck.
One may also use several inclusion functions and take
the intersection of their image sets to get a better ap-
proximation of the image set of the original function.

2.3 Subpavings

Intervals and boxes are not by themselves general
enough to describe all sets of interest, which include,
for instance, unions of disconnected subsets. This
motivates the introduction of the notion of subpaving.
A subpaving of a box [x] is a union of nonoverlapping
subboxes of [x] with nonzero width. The set S of
interest will be bracketed between inner and outer
approximations by computing subpavings S and S

such that
S ⊂ S ⊂ S.

The distance between S and S is indicative of the
quality of the approximation of S. Computation on
subpavings allows approximate computation on com-
pact sets, and forms the basic ingredient of the param-
eter estimation algorithms to be presented below. The
special class of regular subpavings simplifies repre-
sentation and manipulation by computers as they can
be represented by binary trees. A subpaving of [x] is
regular if each of its boxes can be obtained from [x] by
a finite succession of bisections and selections.

2.4 Contractors

Consider a vector x of n real variables xi, linked by
relations (or constraints) that can be written in vector
form as

f(x) = 0. (2)

Assume that the prior domain for x is the box

[x] = [x1]×·· ·× [xn].

Solving (2) for x in [x] is a constraint satisfac-
tion problem (CSP) (Davis, 1987), (Hyvönen, 1992),
(Sam-Haroud and Faltings, 1996), (van Hentenryck et
al., 1998), the solution set of which is

S = {x ∈ [x] | f(x) = 0}.

Inequality constraints can be dealt with within this
framework by introducing slack variables. Instead of
looking for S, which is an NP-complete problem,
contractors aim more modestly at reducing the size
of the prior domain without loosing any solution or
performing any bisection. Many contractors are avail-
able (Jaulin et al., 2001b) and we shall only present
one of them, namely the interval Newton contractor
classically used for global optimization. Assume that f
is once differentiable, and let Jf be its Jacobian matrix
and m be the midpoint of [x]. The mean-value theorem
implies that for any x∈ [x] there exists z∈ [x] such that

f(x) = f(m)+Jf(z) · (x−m). (3)



Now assume that x̂ ∈ [x] is a solution of (2), so f(x̂) =
0. Assume further that the number of constraints is
equal to the number of variables, so Jf is square.
Provided that it is also invertible, (3) implies that

x̂ = m−J−1
f (z) · f(m).

Now z is known to belong to [x], so

x̂ ∈ m−J−1
f ([x]) · f(m).

Since x̂ is also assumed to belong to [x], it must belong
to

[xr] = [x]∩
(
m−J−1

f ([x]) · f(m)
)
. (4)

The interval Newton contractor thus replaces the prior
box [x] by a possibly much smaller box [xr], which
may even be empty if [x] does not contain any solution.
This is obtained without bisection and thus escapes
the curse of dimensionality. The often unrealistic as-
sumption that Jf([x]) is invertible can be relaxed by
replacing (4) by the computation of an outer approx-
imation of the set of all solutions for x̂ in [x] of the
linear system of equations.

f(m)+Jf([x]) · (x̂−m) = 0.

Specific methods involving preconditioning are used
for this purpose (Hammer et al., 1995).

3. BASIC TOOLS FOR NONLINEAR
ESTIMATION

3.1 Global optimization

The problem to be considered now is the minimization
of a cost function c over a compact set P ⊂ R

np :

min
p∈P

c(p) .

It is, of course, always possible to transform a max-
imization problem into a minimization problem, for
instance by multiplying c(p) by −1. The global min-
imum will be denoted by ĉ, and the set of all corre-
sponding global minimizers by S. Although interval
analysis may also be used for constrained or minimax
problems, we shall limit ourselves to unconstrained
minimization. This means that P is only a (possibly
very large) domain of interest, and that the minimizers
are not expected to lie on its boundary. The main ideas
of Hansen’s algorithm will be presented. As this algo-
rithm forms the main subject of his book, this will be
an oversimplification and the reader is urged to consult
(Hansen, 1992) for more details. For simplicity, the
search domain P will be assumed to be a box [p]0 in
parameter space. Let L be a list of boxes included
in P that may contain global minimizers. Initially, L

contains only [p]0. The basic structure of the algorithm
is as follows, where ε > 0 is a tolerance parameter to
be chosen by the user.

While L contains at least one box with width greater
than ε , do {

(1) Pop the first such box [p] out of L ,

(2) Update the upper bound ub(ĉ) of the global min-
imum ĉ over [p]0.

(3) Try to eliminate [p] via the midpoint, monotonic-
ity and convexity tests.

(4) Should this fails, try to eliminate or at least
reduce [p] with the interval Newton contractor.

(5) If [p] resists elimination and w([p]) > ε then
bisect it and push the two resulting boxes into L .
Otherwise [p] is deemed too small to be bisected
and will be pushed back as is into L . }

At last eliminate all boxes of L that no longer pass
the midpoint test.

Except during the first iteration of the algorithm, when
L contains only one box, the rule for selecting the box
to be considered at Step 1 must be chosen carefully as
it has much impact on performance. A good strategy
is to take one of the boxes with the largest potential,
i.e., a box [p] such that for any other box [q] in L with
width greater than ε

lb([c]([p]) 6 lb([c]([q]).

To update the upper bound of ĉ as required by Step 2,
it suffices to compute c(mid([p])), which is of course
an upper bound of the optimal value of the cost, and to
compare it with the best upper bound available so far.

Three methods for eliminating the box [p] under con-
sideration are tried at Step 3. The midpoint test re-
quires the evaluation of the image of [p] by an inclu-
sion function [c] of the cost function. If

lb([c]([p])) > ub(ĉ),

then no vector p in [p] can be a global minimizer of c
over P, so [p] can be eliminated. The monotonicity test
takes advantage of the fact that if c is once differen-
tiable then any unconstrained minimizer corresponds
to a stationary point at which the gradient g takes
the value zero. Thus if an inclusion function [g] is
available for g and if [p] is such that

0 /∈ [g]([p]),

then no vector p in [p] can be an unconstrained mini-
mizer so [p] can be eliminated. Finally the convexity
test is based on the fact that if c is twice differen-
tiable, then a necessary condition for p to be an uncon-
strained minimizer is that the Hessian H of c be non-
negative definite at p. A necessary condition for this
to be true is that all diagonal entries of H(p) satisfy

hii(p) > 0, i = 1, . . . ,np.

So if inclusion functions [hii] are available for the
diagonal entries of the Hessian and if [p] is such that

∃i ∈ {1, . . . ,np} | [hii]([p]) < 0,

then no p in [p] can be an unconstrained minimizer
and [p] can be eliminated.

Automatic differentiation can be used to compute in-
clusion functions for g and H from the code evaluat-
ing c(p) (Rall, 1981), (Griewank and Corliss, 1991),



(Hammer et al., 1995), (Rall and Corliss, 1999),
(Jaulin et al., 2001b). Note that if the cost function c is
not differentiable, or if it turns out that inclusion func-
tions for its gradient or Hessian cannot be obtained,
then parts of Step 3 may have to be dropped. In the
limit, Step 3 may be based only on the midpoint test.

Step 4 uses an interval Newton contractor to reduce
the size of [p] without having to bisect it. The problem
is to find a box guaranteed to contain all solutions in
[p] of

g(p) = 0,

so g plays the role of f in Section 2.4, and the role of
the Jacobian matrix of f is played by the Hessian of c.
Step 4 can of course be implemented only if c is twice
differentiable.

The simplest strategy for bisection at Step 5 is to cut
[p] perpendicularly to one of its edges of maximum
width, but more sophisticated policies taking into ac-
count information provided by the gradient may also
be considered.

Since the tolerance parameter ε is strictly positive, the
algorithm stops after a finite number of steps and the
set S of all global minimizers of c is included in the
union of the boxes in L , each of which has now a
width smaller than ε . It is also possible to compute
an interval [ĉ] guaranteed to contain ĉ, with its upper
bound the best upper bound obtained at Step 2 and its
lower bound given by

ĉ = min
[p]∈L

lb([c]([p]).

The algorithm can also be made to stop when

w([ĉ]) < η ,

where η is another tolerance parameter to be set by
the user.

3.2 Set inversion

Let f be a possibly nonlinear function from R
np to

R
ny and Y be a subpaving of R

ny . Set inversion is the
characterization of the reciprocal image of Y

S = {p ∈ R
np | f(p) ∈ Y}= f−1(Y). (5)

Using an inclusion function [f] for f, two regular
subpavings S and S such that

S ⊂ S ⊂ S

can be obtained with the algorithm SIVIA, for Set In-
verter Via Interval Analysis (Jaulin and Walter, 1993).

A (possibly very large) search box [p]0 to which S is
guaranteed to belong must be provided by the user.
It will be used to grow a subpaving by successive
bisections and selections. Consider a box [p] of this
subpaving. Four cases may be encountered.

(1) If [f] ([p]) has a nonempty intersection with Y,
but is not entirely in Y, then [p] may contain

a part of S without being included in S and is
said to be undetermined. If it has a width greater
than a prespecified precision parameter ε , then
this undetermined box should be bisected into
the boxes L [p] and R [p], each of which should
be investigated by the algorithm.

(2) If [f] ([p]) has an empty intersection with Y, then
[p] has an empty intersection with S and should
be discarded.

(3) If [f]([p]) is included in Y, then [p] is included in
S, and should be stored in S and in S.

(4) If the box considered is undetermined, but its
width is lower than ε , then it is deemed too small
to be bisected further and is stored as is in the
outer approximation S of S.

The resulting recursive algorithm is given in Table 1,
where the subpavings S and S should be initialized as
empty before the first call.

Algorithm SIVIA(in: f,Y, [p] ,ε ; inout: S,S)

1 if [f] ([p])∩Y = /0 return;

2 if [f] ([p]) ⊂ Y then

3 {S := S∪ [p] ; S := S∪ [p]; return;};

4 if w([p]) < ε then {S := S∪ [p]; return;};

5 SIVIA(f,Y,L [p] ,ε ,S,S);

SIVIA(f,Y,R [p] ,ε ,S,S).

Table 1. SIVIA

The uncertainty layer ∆S consisting of all boxes of S

that are not in S is a regular subpaving, all boxes of
which have a width smaller than ε .

3.3 Guaranteed numerical integration

As seen above, Hansen’s algorithm and SIVIA both re-
quire the availability of inclusion functions. When no
closed-form expression or finite algorithm is available
for the evaluation of f, the construction of [f] becomes
much more difficult. Such a situation often occurs, for
example, when the evaluation of f requires the solution
of some ordinary differential equation

x′ = g(x,p, t) , with x(0) = x0 (p) , (6)

where

x′ =
dx
dt

and p is some parameter vector only known to belong
to a box [p]. At a given time instant t, let f(p, t) be the
solution of (6) for a given p ∈ [p] and let f([p] , t) be
the set of all values that can be reached by the solution
of (6) for all p in [p].

Several numerical integrators based on interval analy-
sis are readily available to compute boxes guaranteed
to contain f([p] , t), e.g., AWA (Lohner, 1992), COSY
(Hoefkens et al., 2001) or VNODE (Nedialkov and
Jackson, 2001). The techniques employed usually
consist of two steps. First, the existence of a solution
for (6) over a given time interval is ensured using



Brouwer’s fixed-point theorem. As a result, a box con-
taining f([p] , t) is obtained. This box is then refined
using a Taylor expansion of the solution or other sim-
ilar schemes to get a smaller box [f] ([p] , t) satisfying

f([p] , t) ⊂ [f] ([p] , t) .

Guaranteed numerical integration thus provides an
inclusion function for f(., t). This technique is well
suited for systems such as (6) , where [p] is a degener-
ate box with zero width. For large boxes as needed in
the context of parameter estimation, the enclosure for
f([p] , t) may become very pessimistic. However, when
(6) can be bounded between cooperative systems, it
remains possible to obtain an accurate inclusion func-
tion for f([p] , t), see (Gouzé et al., 2000).

Definition 1. The dynamical system

x′ = g(x, t) ,

where x ∈ D ⊂ R
n, is cooperative over D if

∂gi (x, t)
∂x j

> 0 for all i 6= j, t > 0 and x ∈ D .

The following theorem, which is a reformulation of
a result described in (Smith, 1995), indicates how an
enclosure of the solution of (6) can be obtained with
cooperative systems when p is only known to belong
to [p].

Theorem 1. If there exists a pair of cooperative sys-
tems

x′ = g
(
x,p,p, t

)
and x̄′ = g

(
x,p,p, t

)

satisfying

g
(
x,p,p, t

)
6 g(x,p, t) 6 g

(
x,p,p, t

)

for all p ∈
[
p,p
]
, t > 0 and x ∈ D , and if these

cooperative systems can be given initial conditions
x0

(
p,p
)

and x0
(
p,p
)

such that

x0

(
p,p
)

6 x0 (p) 6 x0
(
p,p
)

for all p ∈
[
p,p
]
, then the solution of (6) satisfies

x(t) 6 x(t) 6 x(t) , for all t > 0,

where x(t) = ϕ
(
p,p, t

)
is the flow associated with

{
x′ = g

(
x,p,p, t

)
,x(0) = x0

(
p,p
)}

and x(t) = ϕ
(
p,p, t

)
is the flow associated with

{
x′ = g

(
x,p,p, t

)
,x(0) = x0

(
p,p
)}

.

�

For any given t > 0, the box-valued function

[ϕ ]
(
p,p, t

)
=
[
ϕ
(
p,p, t

)
,ϕ
(
p,p, t

)]

is thus an inclusion function for the solution of (6).
Usually, however, no closed-form expressions are
available for ϕ

(
p,p, t

)
and ϕ

(
p,p, t

)
, but guaranteed

integration makes it possible to compute enclosures
for these flows at any t > 0 as

[
ϕ
(
p,p, t

)]
=
[
ϕ
(
p,p, t

)
,ϕ
(
p,p, t

)]

and
[
ϕ
(
p,p, t

)]
=
[
ϕ
(
p,p, t

)
,ϕ
(
p,p, t

)]
.

The function

[Φ]
(
p,p, t

)
=
[
ϕ
(
p,p, t

)
,ϕ
(
p,p, t

)]

is then such that

[f] ([p] , t) ⊂ [Φ]
(
p,p, t

)
(7)

and is therefore an inclusion function for the solution
of (6), which can be numerically evaluated for any
t > 0.

Note that the right-hand side of (7) no longer involves
boxes, contrary to its left-hand side. This allows guar-
anteed numerical integration to be used on degenerate
boxes, with much more accurate results.

4. PARAMETER ESTIMATION

The interval tools previously presented will now be
applied to two types of nonlinear parameter estimation
problems, namely parameter optimization and param-
eter bounding.

4.1 Parameter optimization

Nonlinear parameter estimation often boils down to
the optimization of a cost function, which may for
instance result from information or hypotheses about
the noise corrupting the data. This cost function is not
convex in general, and local optimization techniques
cannot be guaranteed to locate its global minimum and
all corresponding global minimizers. Since computing
time is finite, no global search method based on ran-
dom exploration can offer any guarantee either. This
makes deterministic global optimization algorithms
such as that presented in Section 3.1 particularly at-
tractive.
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Fig. 1. Two-compartment model

To illustrate their potential and limitation, consider
the compartmental model described by Figure 1. Such
models are widely used in biology. They consist of
finite sets of homogeneous subsystems, called com-
partments and represented by circles, which may ex-
change material as indicated by arrows. The equations



describing the behavior of the compartmental model
are readily obtained by writing down conservation
equations, under the form of a state equation. Let
x = (x1,x2)

T be the vector of the (positive) quantities
of material in the two compartments of the model of
Figure 1 and assume, for the time being, that all flows
of material are proportional to the quantity of material
in the origin compartment. The evolution of x is then
governed by the linear state equation

x′ = g(x,p,u) , (8)

where
p = (k01,k12,k21)

T

and

g(x,p,u) =

(
−(k21 + k01)x1 + k12x2 +u

k21x1 − k12x2

)
.

Assume that the quantity x2 of material in Compart-
ment 2 is observed, so the model output is

ym (p, ti) = x2 (p, ti) , i = 1, ...,ny. (9)

Assume further that there is no input (u ≡ 0) and that
the initial condition is x0 = (1,0)T. Then, for ti > 0,

ym (p, ti) = α (p)
(

eλ1(p)ti − eλ2(p)ti
)

, (10)

where

α (p) =
k21√

(k01 − k12 + k21)
2 +4k12k21

, (11)

λ1,2 (p) =−
1
2

[(k01 + k12 + k21)

±((k01 − k12 + k21)
2 +4k12k21)

1/2]. (12)

Although the model is linear, its output thus depends
nonlinearly on its parameters.

The least-square estimate of p is obtained by minimiz-
ing the cost function

c(p) =
ny

∑
i=1

(y(ti)− ym (p, ti))
2 , (13)

where y(ti) is the quantity of material measured in
Compartment 2 at time ti. Results obtained with
Hansen’s algorithm on this problem where reported
in (Kieffer and Walter, 1998) and will only be sum-
marized here. With sixteen data points, the search
domain P = [0.01,2.0]× [0.05,3.0]× [0.05,3.0] and
a precision parameter ε = 10−9, it took about a day
on a Pentium at 200MHz to enclose the set of all
global minimizers of (13) in the union of two very
small boxes in parameter space. These two solutions
are due to the fact that the parameters of this model
are only locally identifiable, see, e.g., (Walter, 1982),
because the values of k12 and k01 can be exchanged
without modifying input-output behavior. Note that no
identifiability study was needed to reach this conclu-
sion here. The disappointing length of these compu-
tations is due to multioccurrences of the parameters

in the natural inclusion function for ym (p, ti) and a
fortiori in the natural inclusion function for c. Note
that p appears ny times in the formal expression of
the cost function. Optimization time can be drasti-
cally decreased to about 90s by using an intermediate
parametrization of ym (p, ti) in terms of α , λ1 and λ2

and then solving (11) and (12) for p using an interval
Newton solver.

4.2 Parameter bounding

Parameter bounding, see, e.g., (Milanese et al., 1996),
represents an attractive alternative to parameter opti-
mization. Instead of looking for an optimal value of
p, one looks for the set of all parameter vectors that
are consistent (in a sense to be specified) with the
experimental data, model structure and error bounds.
It is assumed that each experimental datum y(ti) corre-
sponds to a known interval [ei,ei] of acceptable errors.
A parameter vector p ∈ [p]0 is deemed acceptable if
ei 6 y(ti)−ym (p, ti) 6 ei for all i = 1, . . . ,ny. Parame-
ter estimation then amounts to the characterization of
the set

S = {p ∈ [p]0 |y(ti)− ym (p, ti) ∈ [ei,ei] ,

i = 1, . . . ,ny
}

= {p ∈ [p]0 | ym (p) ∈ [y]} , (14)

with

[y] = [y(t1)− e1,y(t1)− e1]×

·· ·× [y(tny)− eny ,y(tny)− eny
]

and

ym (p) =
(
ym (p, t1) , . . . ,ym(p, tny)

)T
.

One of the advantages of this approach from the point
of view of interval analysis is that the multioccur-
rences of p due to cost functions such as (13) are
avoided, thus decreasing the pessimism of inclusion
functions and the number of bisections required to
reach a satisfactory conclusion.

A guaranteed enclosure of S can be obtained using
SIVIA, described in Section 3.2, as (14) is a set-
inversion problem similar to (5), with Y = [y]. Solving
(14) with SIVIA requires an inclusion function for
ym (p) to be provided. Two approaches may be consid-
ered depending on whether a closed-form expression
is available for ym (p, ti). They will be illustrated by
considering again the model of Figure 1.

4.2.1. Set inversion using a closed-form expression
Assume that

y(ti) = x2 (p∗, ti) (1+b(ti)) , i = 1, ...,16, (15)

where p∗ is the true value of the parameter vector
and b(ti) ∈

[
b,b
]
. Noisy data have been obtained as



follows. First the noise-free response x2 (p∗, ti) was
computed by simulating (8) with the true value of the
parameters to be estimated given by (k∗01,k

∗
12,k

∗
21) =

(1,0.25,0.5). This noise-free response was then cor-
rupted according to (15) with realizations of a pseu-
dorandom noise b(ti) belonging to [−0.05,0.05]. The
resulting data points are indicated by dots on Figure 2.
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Fig. 2. Measured output (·), upper bounds (5) and
lower bounds (4) of the tolerance intervals (the
true system is linear)

The intervals [ei,ei] must be chosen such that

x2 (p∗, ti) ∈ [y(ti)− ei,y(ti)− ei] , i = 1, ...,16.

(16)

Equation (15) implies that

x2 (p∗, ti) ∈
1

1+[−0.05,0.05]
y(ti)

⊂ [0.95238,1.05264]y(ti),

so taking
ei = −0.05264y(ti) (17)

and
ei = 0.04762y(ti) (18)

ensures that (16) is satisfied.

Using SIVIA with the initial search box [p]0 = [0,5]×3

and various values of the precision parameter ε leads
to the results summarized in Table 2 for computations
on an Athlon 1800+.

ε 0.005 0.0025 0.00125

Comput. time (s) 9 14 24

Volume of S 1.7 ·10−3 4 ·10−4 1.2 ·10−4

Table 2. Estimation results using a closed-
form expression

Figure 3 presents the projections of S onto the
(k01,k12) and (k12,k21) planes when ε = 0.0025. S

consists of two disconnected subsets. Again, k01 and
k12 can be exchanged without modifying the input-
output behavior of the model.
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Fig. 3. Projections onto the (k01,k12) and (k01,k21)
planes of S found using a closed-form expression
with ε = 0.0025

4.2.2. Set inversion using guaranteed integration
With this approach, a closed-form expression for
ym (p, ti) is no longer needed.

For a given box [p] =
[
p,p
]

in parameter space such
that p > 0, with

p = (k01,k12,k21)
T and p =

(
k01,k12,k21

)T
,

it is possible to enclose g(x,p,u) in (8) between

g
(
x,p,p,u

)
=

(
−
(
k21 + k01

)
x1 + k12x2 +u

k21x1 − k12x2

)

and

g
(
x,p,p,u

)
=

(
−(k21 + k01)x1 + k12x2 +u

k21x1 − k12x2

)

As p > 0, it is easy to show that

x′ = g
(
x,p,p,u

)
and x′ = g

(
x,p,p,u

)

are cooperative. The technique presented in Sec-
tion 3.3 thus makes it possible to obtain an inclusion
function for ym (p, ti). Since the initial condition of the
model does not depend on p, the bounding cooperative
systems are given the same initial condition

x0 = x0 = x0.

For [ei,ei] , i = 1, . . . ,16, the same intervals are taken
as in Section 4.2.1. Using SIVIA and the guaranteed



integration toolbox VNODE with the same initial
search box in parameter space now leads to the results
summarized in Table 3. The shape and volume of the
set obtained for ε = 0.005 are similar to those obtained
in Section 4.2.1 for ε = 0.0025.

ε 0.01 0.005

Comput. time (s) 1300 1600

Volume of S 2.5 ·10−3 6 ·10−4

Table 3. Estimation results using
guaranteed integration

Two remarks are in order when comparing Tables 2
and 3. First, with the same value of the precision
parameter ε , the volume of S is smaller when using
guaranteed integration than with the closed-form ex-
pression used in Section 4.2.1. This is due to a less
pessimistic inclusion function. However, if results of
the same accuracy are compared, the computing time
using guaranteed integration is more than 100 times
larger than with the closed-form expression.

4.2.3. Nonlinear system Assume now that k01 in (8)
depends on x1 according to

k01 (x1) =
a

1+bx1
.

This corresponds to a Michaelis-Menten nonlinearity
(Godfrey, 1983).

The evolution of the quantities of material in the
two compartments of the model of Figure 1 is now
described by the nonlinear state equation

x′ = h(x,p,u) , (19)

where
p = (a,b,k12,k21)

T

and

h(x,p,u) =


−k21x1 −

ax1

1+bx1
+ k12x2 +u

k21x1 − k12x2


 .

Again, Compartment 2 is observed, with input and
initial condition as in Sections 4.2.1 and 4.2.2. The
observation equation is as in (15), with the same
hypothesis about the b(ti)s. An inclusion function
based on guaranteed numerical integration will be
employed.

For any p ∈
[
p,p
]

such that p > 0, it is possible to
bound h(x,p,u) in (19) between


−

(
k21 +

a
1+bx1

)
x1 + k12x2 +u

k21x1 − k12x2




and

−

(
k21 +

a

1+bx1

)
x1 + k12x2 +u

k21x1 − k12x2


 .

The resulting systems are cooperative, as p > 0. It is
thus again simple to built an inclusion function for
ym (p, ti).

Two sets of data points have been considered. In the
first one, the data points y(ti) and intervals [ei,ei] ,
i = 1, . . . ,16, are as in Sections 4.2.1 and 4.2.2. SIVIA

has been used here with the initial search box

[p]0 = [0,5]× [0,5]× [0.25,0.25]× [0.5,0.5] ,

which means that k12 and k21 are now treated as known
a priori. When ε = 0.001, in less than 55s on an
Athlon 1800+, the subpaving S presented on Figure 4
is obtained.
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Fig. 4. Outer approximation of the solution set for
(a,b) when the true system is linear

By projecting it on the axes of parameter space, one
gets the following parameter uncertainty intervals

[a] = [0.9955,1.0114]

and
[b] = [0,0.02930].

Since the data have been generated with a linear
model, it comes as no surprise that the parameter un-
certainty interval for b includes 0.

The second set of data points has been obtained by
corrupting the noise-free response x2 (p∗, ti) of (19)
where (a∗,b∗,k∗12,k

∗
21) = (1,4/3,0.25,0.5) with real-

izations of a pseudorandom noise b(ti) belonging to
the interval [−0.05,0.05] according to (15), see Fig-
ure 5.

The intervals for [ei,ei] , i = 1, . . . ,16, are computed as
before, using (17) and (18), and the initial search box
is as for the first set of data points.

When ε = 0.01, in less than 4mn, the subpaving S

presented in Figure 6 is obtained. As b cannot be zero,
the data represented on Figure 5 could not have been
generated by a linear model, given our hypotheses.

5. SOFTWARE

We shall limit ourselves to tools that can be down-
loaded freely, at least for academic use.
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Fig. 5. Measured output (·), upper bounds (5) and
lower bounds (4) of the tolerance intervals (the
true system is nonlinear)

0

5

5
a

b

Fig. 6. Outer approximation of the solution set for
(a,b) when the true system is nonlinear

Those familiar with MATLAB will find INTLAB, a
library developed by S. M. Rump, particularly useful
for experimenting with interval techniques. INTLAB

runs under WINDOWS, UNIX and LINUX and may be
downloaded from

http://www.ti3.tu-harburg.de
/english/index.html

A number of interval algorithms cannot be imple-
mented efficiently enough with an interpreted lan-
guage such as MATLAB; this is why interval libraries
built in compiled languages should also be useful.

C-XSC 2.0, a C++ class library developed by many
people over more than a decade of an effort started at
the University of Karlsruhe, is available at

http://www.math.uni-wuppertal.de
/~xsc/xsc/download.html

together with a C++ toolbox for verified computing
that works with C-XSC 2.0.

PROFIL/BIAS, also written in C++ and developed by
O. Knüppel and S. M. Rump, is available at

ftp://ti3sun.ti3.tu-harburg.de
/pub/profil/

Chapter 11 of (Jaulin et al., 2001b) shows how a
library such as PROFIL/BIAS could be built and how
subpavings and algorithms such as SIVIA can then be
implemented. The corresponding C++ source code is
available at

http://www.lss.supelec.fr
/books/intervals

A FORTRAN 90 software developed by R. B. Kearfott
for global optimization is available at

http://interval.louisiana.edu
/GlobSol/download_GlobSol.html

All of these products have benefited considerably from
object-oriented programming and operator overload-
ing, which allow intervals and boxes to be manipulated
about as simply as standard data types.

Tools for guaranteed numerical integration have been
developed in various languages. AWA uses PASCAL-
XSC and may be found at

ftp://ftp.iam.uni-karlsruhe.de
/pub/awa/

COSY was written in FORTRAN 90 and is available
at

http://cosy.pa.msu.edu/

VNODE has been developed in C++ using PRO-
FIL/BIAS and may be downloaded from

http://www.cas.mcmaster.ca/~nedialk
/Software/VNODE/VNODE.shtml

A regularly updated list of pointers to software imple-
menting interval analysis can be found at

http://www.cs.utep.edu
/interval-comp/main.html

6. CONCLUSIONS

When nonlinear parameter estimation involves min-
imizing possibly nonconvex cost functions or solv-
ing sets of nonlinear inequalities, global deterministic
methods based on interval analysis have definite ad-
vantages over more conventional local iterative meth-
ods that are unable to provide any guarantee as to
their results. Structural identifiability studies can be
bypassed since all solutions are provided, including
(but not limited to) those due to a lack of global
identifiability. Examples drawn from compartmental
modeling have shown that it is possible to estimate
the parameters of models defined by (possibly non-
linear) differential equations. The main challenge is
to increase the complexity of the problems that can
be considered as much as possible. Two allies in this
endeavor have been briefly presented; the first one is
the notion of contractor, which allows boxes to be
reduced and sometimes eliminated without bisection,
and the second is the property of cooperativity, which



allows efficient inclusion functions to be derived for
important classes of differential models.

The ideas presented here in the context of parameter
identification readily extend to state estimation or
parameter tracking, see (Kieffer et al., 1998), (Jaulin
et al., 2001a) and (Jaulin, 2002).
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