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Abstract:

Before trying to estimate the parameters of a kedge-based model from experimental data,
one would like tanake sure the exercise is not doomed from the start

This unit explains how the notion pffior identifiability can be used for this purpose.

Methods that can be used to test linear and narlikaowledge-based models for prior
identifiability are presented, and applied to achialogical and chemical models.

More on the material presented here can be found in
Eric Walter,ldentifiability of State Space Models, Springer, Berlin, 1982.

Eric Walter and Luc Pronzatbdentification of Parametric Models from Experimental Data,
Springer, London, 1997.
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Introduction

(Mathematical) models may be built to:

e understand,

» estimate quantities for which no sensor is avasgabl
* test hypotheses,

* teach,

» predict behaviour,

 control processes,

e process signals

Whatever the aim, it should be made explicit (sei@ty not an excuse).
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System (or process)

Part of universe considered as an entity.

» We observe theoutput vectory.

 Weareinterested in the vectoiz, whichmay differ fromy.

* We mayact on the systeniny means oinputs, which form the vectou.
* We endure the effect operturbations, ornoise n.
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Model

Rule to compute quantities we are interested imfwhat is available.

Frequently,

> Ym
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Model often involves unknown (constant) quantitiebdcestimated.

They form thgparameter vectqo.

Model structure M(-) # specific modeM(p).

OnceM(-) has been selecteg must be estimated, using some optimality criterion.

If several model structures compete for the descripibrthe same data, their
performance will also be compared with the help offi@rion.
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Criterion

Theoutput error

ey(t, p) =y(t) —ym(t, p)

should be made as small as possible, in some sense.

u(t)

S y(®)
+
Yt P)
M(p)

— Zm(ta p)
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Scale of values needed to quantify smallness.
— scalar function(-) of the parameters and possibly of the structtaked thecost function.

Example:

jlp) = 2 z square of error(p)

measurement times output components

Cost must be optimized with respecpto
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Optimization

A possible scheme (out of many) is

n(t)
y()
—> S
T 8y Cost |
u(t)—— P, & evaluation
Ym(ta p) )
— M(p) (o)

[

Y

Optimization<

— Zn(t, p)
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Before attempting the operation, we wish to make #gus not doomed from the start.

Notion of prior identifiability will provide a paidl answer.

Let us first distinguish

» knowledge-based and behavioural models (schemadisianplistic but useful),
 linear and nonlinear models (very important).
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Knowledge-based and behavioural models

Knowledge-based models built from basic principles, by writing down batanequations.

Consider, for instance, the chemical reaction

A—2 - p_ P
P,

C

If reactions obey first-order kinetics and reacsothermal and well stirred, then

d
AAL - p11a + pare,

d
Jd%l = p1[A] - (p2 + p3)[Bl,

d
Jd%l = p3[B].
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Model structure thus imposed by the prior knowleftenypotheses) about the system.
Parameterg; are kinetic constants.
State variables4], [B] and [C] are concentrations.

Parameters and state variables of knowledge-baesddlsmhave a precise concrete meaning,
so we usually wish to get accurate estimates afthe

At the other hand of the spectrum, we have:

Behavioural models, which merely approximate observed behaviour.
Now prior knowledge required.

Not even necessary to know what the inputs andusigiand for.

The parameters of behavioural models usually havehysical meaning.
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For example, polynomial model
ym(t, p) = p1 + pat + pst2 + pat3 + ...
can reproduce, with arbitrary precision, any firsét of experimental data
y(ti),i=1, .., nt,
provided that polynomial degree large enough.
Particularly simplistic example of a behaviouraldab

Behavioural models are in general simpler to siteuland more suited to control than
knowledge-based models (easy to find counter exasnghough).

We shall be concerned here with knowledge-basecsod
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Linear and nonlinear models

Two types of linearity must be distinguished.

ym(t, p, U) £ output at time of M(p) when inputu(7), 0< r<t, has been applied from zero
initial condition.

M(-) is linear initsinputs (L) if ym satisfies superposition principle with respeatito

O, ) eR2 Ot € RY, ym(t, p, Auz + tu2) = Aym(t, p, u1) + ym(t, p, uz).

When control engineers speak of linear models, tiseplly refer to this type of linearity.

Moreover, they often assume implicitly that the mods time-invariant,i.e., that its
behaviour is invariant under a translation of thigio of time.

LI models are a (sometime very useful) approxinretio
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M(-) is linear inits parameters (LP) if ym satisfies superposition principle with respegbto
O ) € R2, 0t € RY, ym(t, Ap1 + up2, u) = Ayn(t, p1, u) + ym(t, p2, u).

When statisticians speak of linear models, theyliguefer to this type of linearity.

Extremely useful to know whether the model struetwwnsidered is LP or not, and LI or not

Ym _ —P1Ym + pou is LI but not LP.

dt

Very many knowledge-based models are not LP!
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Structural properties of models

OnceM(-) chosen, we wish to study its properties indepetigef the value taken bpy.

This could allow problem detection even before datléection.
A property isstructural (or generic) if it is true foralmost any value ofp.
Thus, the probability of randomly picking an atyadigalue ofp is zero.

Two structural properties are of special importaioceus:

. identifiability
. distinguishability.
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|dentifiability

Can we hope to estimate a meaninfc

n(t)
y@®
—> S
: T 8y Ciost B
u(t) evaluation
/4 / —
ym(, p) _

—> M(p) [(9)

— Zn(t, p)

[y

Optimization<
-t
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Such a vague question has no answer, so we comsideralized frameworkwhere

e process and model have the same structure,
» data are noise-free,

e inputu and measurement times can be chosen at will.

Always possible then to turfeso as to make the model input-output behaviountidal to
that of the process, which we denoteMbip™) = M(P ).

—— zm(t, P, U)
— M(p* .
®) — Yot P, U)
+
u(t Samg structure ey=0
) : 3
Ym(, 6’ u)
—  M(p)
— > Zm(ta /F\)i U)
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We wish to know whethavi(p*) = M(p ) impliesp =p”*.
More precisely,

« Parametepj is structurally globally (or uniquely) identifiable (s.g.i.) if for almost anyp™
In P,

M(P ) =M(p*) =pi=pi .

o StructureM(:) iss.g.i.if all its parameters are s.g.1.

When one cannot prove thisk(.) is s.g.i., one may try to establish that ittsleast locally
identifiable.
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« Parametepj is structurally locally identifiable (s.l.i.) if for almost anyp™ in P, there
exists a neighbourhood(p™) such that

P €V(p") andM(P) =M(p*) = Pi=pi .
[Local identifiability thus necessary for globakitifiability.]
o StructureM(:) iss.li. if all its parameters are s.l.i.

« Parametepj is structurally unidentifiable (s.u.i.) if for almost anyp™ in P, there is no
neighbourhood/(p*) such that

p € V(p*) andM(P)=M(p*) > pi=pi

StructureM(-) is s.u.i.if one at least of its parameters is s.u.l.
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Dumb example:

Let V be the difference of potential between the extliesiof a resistor (input), andoe the
resulting current through the resistor (output)ti\\dhm’s model

U=R-I
parameteR is s.g.i.

If Ohm had been stupid enough to choose

U= (cosR) I
thenR would be s.l.i. With

U=R, R,-1I

R, andR; would be s.u.i.
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REMARKS

« Some parameters of an s.u.i. model may be s.l@dven s.g.i.

 |dentifiability may depend on the numerical vala&en byp without the atypical
region being of zero measure. Impossible thendolra structural conclusion.

« If the input and measurement times are figgaiori, it suffices to replac#(p ) =

M(p*) in the definitions byym(p ) = ym(p*), whereym(p) stands for the vector
obtained by concatenating all available outputmesstm(ti, p, u), 1 =1, ... ,nt.

Many methods available for testing models for stread identifiability.

We shall only consider non-LP models (identifigigilof LP models is a trivial matter), and
start by methods for (time-invariant) LI models.
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Consider a structud(-) described by

% X =A(p)X + B(p)u , x(0) =xo(p),
ym = C(p)x + D(p)u.

(LI, not LP)

Laplace-transform approach

Eliminating statex from Laplace transform of previous equations, we g

ym(s, p) = Ha(s, p)u(s) + Ha(s, p)xo(p),
with

H1(s, p) = C(p)[sl —A(p)]-1B(p) + D(p) andH2(s, p) = C(p)[sl —A(p)]-L
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M(P) =M(p*) = ym(s, B) ~ym(s, p*) =0 Os u(s).
— set of algebraic equations bindifgandp™.
If for almost anyp™
« solution forp is unique thenM(:) s.g.i.
« set of solutions fop is finite or denumerablethenM(+) s.L.i.

« set of solutions fop is not denumerableghenM(-) s.u.i

Any parameter that takes the same value in altisoisi is s.g.1.

Any parameter that takes its values in a finited@mumerable set is s.l.i.
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Writing H1 andH2 in canonical form simplifies computation considerably.

Then

M(P ) =M(p*) < thecoefficients of H1 andH, have the same value fpr=p andp =p”.

Canonical fornfor instance obtained by

» writing each entry of the transfer matrix as aaati polynomials ordered i)

« simplifying numerator and denominator by GCD (otitg controllable and observable
part of the model remains),

» setting the coefficient of the denominator monomaidgh highest (or lowest) degree $n
equal to one.
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EXAMPLE

Consider the (LI, non-LP) compartmental model strreedefined by

d
gt Xt=—Pr+p)xa+pxe+u, x(0) =0,
d

gt X2 = PrX1—paxe, x2(0) = 0,
Ym = Xo.
Take Laplace transform
(S +p1+ P2)xa(s) = Pax(s) + u(s),

(S + p3)xa(8) = prxa(s),

Ym(S) = Xa(9).
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Eliminatex; andx, to get

(S+p1+ P2)(S + Pa)ym(s) = PrPsym(s) + pau(s).

Transfer function (in canonical form) is

s ) = p1
YSPI= 2 1 g1+ p2 + p3) + p2p3

M(P ) = M(p”) therefore equivalent to

p1=pl,
P2+P3=p2 +p3,
p2p3=p2p3.
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Now
p1=pi,
p2+Pp3=p2 +p3,
p2p3=p2p3,

hastwo solutions fof , namely

p1=(@1l,p2,.p3)T and p2=(pi,p3,p2)T.

First parameter, which takes the same value itvbesolutions, is s.g.l.
The other two, which each can take two valuespahgs.l.i.

From noise-free data, possible to compute theuvahae forpi, whereas two possible values
will be obtained foipz andps.
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REMARKS

« With an iterative local optimization algorithm, weould (at best) have found either of
the two solutions. We can now generate the other.

« If p* such thaip; = 0, then output is identically zero whatever iheut, sop, andps
become unidentifiable. These parameters are n&lesths.l.i., fops = 0 is atypical.

» Since model not s.g.i., impossible to reconstri@atesuniquely from the knowledge of

input-output behaviour. Depending on the modelctete two possible values fry will
be obtained.

* More generally, if the vectar of the quantities of interest depends on statebkes that
are not measured, important to make sure that meded.i., or at least that

M(P ) =M(p*) = Zm(t, P , U) = zn(t, P, U).

« The existence of a true value of the parameterd ne¢ be assumedg™ may be the
parameter vector of a model generating a satigfaatput-output behaviour.
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Note: If model only to be used for prediction ontrol of
procesoutput, with no constraint on quantities that cannot be
measured directly, then identifiability is not @sue.
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Similarity transformation approach

Assume “processiM(p”) described by

% X" =A(P")x" +B(p*)u, x*(0) =x0(p"),
ym = C(p*)x* + D(p*)u.

LetX =Tx*, with T invertible. Then

%9 =TA(P)T-IR + TB(p*)u, R(0) =Tx0(p™),
ym = C(p*)T-1R + D(p*)u,

will have the same input-output behaviourM&™). It will correspond to aM(p ) if and
only if
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(AP) =TA(P")T-L,
B(f) =TB(p"),
C(p) =C(p")T-4,
D(p) =D(p"),

L X0(p) = Tx0(p*),

N

which is asufficient set of conditions foM(p ) = M(p™). It turns out to be alspecessary,
provided thaM(p*) be observable and controllable (assumed here).

Structural identifiability oM(-) can then be tested by looking for all solutioms( , T).

If for almost anyp™
« only solutionisf , T) = (p”, I), thenM(-) is s.g.i.
« set of solutions fop is finite or denumerable, thém(-) is s.L.i.
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EXAMPLE (CONTINUED)

State and observation equations are such that

N _[—m1+p2 p3} - _{1} -
(p)_ pl _p3 ' (p)_oi X()—,

C(p)=[0 1], D(p)=0.
M(-) structurally controllable and observable, so Enty transformation approach applies.
Zero initial conditions bring no information dn

Exploit first the structures @ andC, with tix = [T]ik:

C()T=C(p*) =t =0,tn=1,
B(ﬁ ) :TB(p*) = t11= 1.
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So

1 a
T(u):{o 1]

The set of all possible matricéssatisfies

—(P1+p2) +apl  a(pl+pd) +p3 - a2pi—ap3

APB) =T(@AP")T-Ya) { i e —

In A(P ), the sum of the terms of the second column Mesiqual to zero, so
a2pl + a(p3 —p2) = 0.

This equation has two solutions fay namely
* *
2—P3
a=0 anda:p *p .
P1
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34



5o "
a=0 = T:I,ﬁ:|O*andcr:p|[ﬁIO = T#I, p =| p3

| p2_

Same conclusion as with Laplace-transform apprdsi¢h):is s.l.i.; onlyp; is s.g.i.,p2 andps
can be exchanged without modifying the input-outpttaviour.

Even from noise-free data, impossible to estinpdtendx™ uniquely, but all their possible
values can now be computed.

REMARK

Although conclusion does not depend on methodrdgeired computations do.

Depending on the example considered, one or ther @pproach may turn out to baich
simpler.
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The methods to be considered now also apply toLihonedels.

Taylor series approach
AssumeM(-) described by

9= 11x0, u®. £ Bl X(O) =xo(p).  yin(t, p) =hx(V), pl

wheref andh are infinitely continuously differentiable.

Let
. dx
aK(p) = lime_o4 = ym(t, P).

M) =M(p*) = ak(P ) =ax(p*), k=0,1, ...
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A sufficient condition forM(:) to be s.g.i. is therefore

aP) =ak(p*), k=0,1, ... kmax = P =p’,

with Kmax sSmall enough for the computation to remain traetab

EXAMPLE

Consider the matrix of all impulse responses of state-space model (with = 0)

Ym(t, p) = C(p)explA(p)tIB(p).
Since

lime 0. Sz Yin(t, B) = C(P)AK(P)B(P).

the Taylor series approach amounts to testing ifiedmtity from identity of the Markov
parameters
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C(P)AKP )B(P ) =C(p")AK(p*)B(p*), k=0, 1, ... Kmax

a method that usually turns out to be more comy@atahan the Laplace transform and
similarity transformation approaches.

EXAMPLE

Consider now the unforced non-LI structivié¢) defined by

d {—plxl— p2(1 —p3ax2)x1

1
dt P2(1 —p3X2)X1 — pax2 } - x0) :{O} Yt p) =
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Successive derivatives g, att = O+ satisfy

ao(p) = 1,
a1(p) = —(p1 + p2),
az(p) = (p1+ P2)2 + P2 p3,
ag(p) = 3 P8 — 4P pa(P1+ P2) —Pé papa — (P1 + p2)3,

and
aP ) =a(p*), k=1,2,...,5= p =p".

M(-) is therefore s.g.1.

REMARK

If p3is set to zero, the model becomes LI and s.ulin(odels tend to be less identifiable
than their non-LI counterpar)s!
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Local state isomorphism approach

Extends similarity transformation approach to ndmrodels.

AssumeM(-) defined by

d
gt X(®) =1[x(), p] + u®g[x(t), pl.  x(0) =xo(p),  ym(t, p) = h[x(V), pl,

wheref, g andh are analyticu is a measurable bounded function &(g) is locally reduced
atxo(p) for almost anyp (which corresponds to a notion of observabilitd aontrollability).

Let x* be the state d¥l(p*) and® that of M(P ).

M(p*) andM(P ) will have the same input-output behaviour foy arup to some; > 0 if and
only if there exists a local state isomorphisrg: - Rn, x* - & =@x*) such that
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for any x* in the neighbourhootp of xo(p*)

@is a diffeomorphism ran%é2 Ix=x* = (1)

initial states correspond Q(x0) = X 0, (i)

drift terms correspond fR,0)=flax*),p]= %q% x=xt FOC, p), (i)
oq@x)

control terms correspond gk ,p) =glex*),p]= ot b=x 90, ), (V)

observations correspond h(&,P)=h[@ex*),p]=h(x*p*). (V)

After checking thaM(p) is locally reduced ato(p), one can look for all solutions f@ir and
@of (i) — (v).
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If for almost anyp* the only possible solution f§ = p* and@Xx*) = x*, thenM is s.g.i.

May involve fairly complicated computatiofirst to check thaM(p) is locally reduced and
then to solve (i) — (v) fop ande.

But

If there existspo such thatM(po) is LI, controllable and observable, th&f(-) is locally
reduced ax(0) =0.

If

» the components dfandg are polynomials ix parametrized bp
« andh[x(t, p), p] = C(p)x(t, p),
thengis a linear transformatidgh = Tx*, which drastically simplifies calculations.
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Conditions (i) — (v) then become

detT # 0, (i"
Txo(p*) =xo(P ), (i)
f(Tx*, ) =T, p*), (i’
g(Tx*, p) =Tg(x*, p*), (V")

C(p)T =C(p"). %)

For LI models also, the local isomorphism is adingansformation, and the method reduces
to the similarity transformation approach.
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EXAMPLE
Consider the non-LI structuM(-) defined by

d {—plxl— p2(1 —pax2)x1

1
dt "~ pz(l—p3Xz)xl—p4XJ J{o} 4 X(0) =0, ymlt,p)=x=10 L] x

Trivial to check that whepsz = 0 the structure becomes LI and structurally alatble and
observable, st is structurally locally reduced and the local ste&omorphism approach
applies.

M(-) is polynomial, sa(x) = Tx, and Conditions (i’) — (V') express thisl(p*) = M(P ).

Condition (ii") brings no information of. Conditions (iv’) and (v’) imply thafl can be

written as
T(a) = .
(@) 01
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Condition (ii’) then translates into

—1(X1 + a3) — P2(1 —Pax3) (X1 + a2)
f(Tx*, ﬁ ) =
P2(1 —Pax3) (X1 + ax3) — Paxd
1 a || P11 —pa(1 —pax2)X1
:Tf(x*1 p*) - * * K\ K * % '
0 1.1[ p2(1 —p3x2)x1 —pax2

Second row equivalent to
—oP PG 2+ (5 ps —P2BKixE + (B2—pa)Xi + (04 + aP2—Papd = 0.

Must hold true foany x* around0 and almost anp™, sop2=p2,P3=p3, a=0andb4 =
P4 .

Processing first row in the same manner provesthatpi , SOM(-) s.g.i.
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Use of elimination theory

Computer-algebra software such as MAPLE can be tased

« get equations expressiMyp ) = M(p*)
* solve them.

Equations can often be put into the form of sefgadynomial equations in several unknowns,
which can be transformed into triangular ones whthhelp of elimination theory.

These sets of triangular equations can then beeddby considering a sequence of single-
variable polynomials.

Sincep is assumed to belong tow, one should only consider real solutions, whichy ma
complicate the matter.

Parameter Estimation in Physiological Models, Esmonmer School, Lipari, September 2009.
46



Differential algebra, in which differentiation iglded to the classical axioms of algebra,
makes it possible to use a similar approach toieéite state variables.

When differential input-output relations can thus dbtained, they can be used to study
identifiability.

EXAMPLE

Volmer-Heyrovski mechanism used in electrochemistrglescribe the production of gas or
the dissolution of metals:

] k1(0)
at XO = kO -XO] - kOO, X0) =} 5y +i(0)

k() = p1 explpau(t)],  ka(t) = ps explpau(t)],

ym(t) = ka(O[1 —x(0)] + ka(t)x(t).
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Differentiate observation equation with respedinte, to get

dym dki dko dx
G T @9 g X+ ke —ka) g

Replace &/dt by its value as given by the state equation aniphuthe result by K2 —ki) so
as to use the observation equation to elimirated get the input-output equation

dym  dki dke dkg o dke
(e—ki) o + g — g+ —K81ym =g ke —k g + Zkake(ke—ka),

with the initial condition

k1(0)k2(0
ym(0) =k1(0)[1 —x(0)] + kz(0)x(0) = 2k1(1(§) )-l-i(z(z)) |

Exchangingkis andky (i.e. (p1, p2) and @3, ps)) leavesy(0) unchanged and multiplies both
sides of the input-output equation by (HH):) is therefore not s.qg.i.
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Finally, consider a model defined by a set of refet
rk(ym, U, X, p) =0, k=1, ... ,ny,

where theri’'s are polynomial functions af, ym andx and their derivatives with respect to
time and polynomial functions qf

Any uniquely identifiable parametgk is the solution of a linear equation
akpk = by,

whereax and bk are polynomial functions of the inputs, outputsl dheir derivatives with
respect to time.

Computingak andbk can therefore be used to prove the global idaiiiity of px.

Parameter Estimation in Physiological Models, Esmonmer School, Lipari, September 2009.
49



Numerical local approach

The computations required by algebraic approachmsmsometimes too complex.

The following method can then be used to check ndréd(-) is (at least locally) identifiable.

« Randomly pickpp in P and simulaté/(po) with a high precision to get fictitious data

» Estimatep from yf by minimizing a quadratic cost in the output eath a second-
order method such as Newton or Gauss-Newton izgdlatpo.

« If P kremains stable g, thenM is s.L.i.

 [If the estimator is unstable, this may have manysea. Other nominal values should
be picked before reaching a conclusion.

Optimization algorithms that incorporate a reguaation procedure (such as Levenberg-
Marquardt) cannot be used for testing local ideatdifity.

More sophisticated local numerical approaches eaanded to study the local dependencies
between unidentifiable parameters.
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Distinguishability
When hesitating between model structures, nataradsk whether the measurements will

make it possible to decide which one is the best.

This question of distinguishability receives a @rnswer in the same idealized framework
as identifiability.

Assume the “process” is a model with structMie) while its “model” has the structufé(-),
which now differs fromM(-).

Let P be the parameter vector associated With), andp be the one associated wif{(-).

It may be impossible to turfe so thatW(p) = M(p). It is this impossibility that may permit
the elimination of¥(-) in favour ofM(-).
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E— M(p) | Ym( P, u)

N
u(t) leferlng*structures e,
— IOI(ﬁ)

9 P, u)

M(+) is structurally distinguishable (s.d.) from M(-) if, for almost any feasible value @f

there is no feasible value pfsuch that(f) =M(p).

If M(-) is s.d.from M(-) andvice versa, thenM(:) andM(+) are said to be s.d.
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The techniques to test pairs of model structuresliiinguishability are similar to those used
for identifiability.

One now hopes to prove the non-existence of aisaldor f, whereas in identifiability
studies one hoped to prove the uniqueness ofdhisen.

EXAMPLE

M(-) defined by

d

gt X1= —(pr+p2)xe + paxz +u, x(0) =0,
d

gt X2 = P2x1 —p3x2, x2(0) = 0,

Ym = X1,
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competes witl#1(-) defined by

%91=—6291+ﬁ392+u, %1(0) =0,

%QZ:ﬁZQl_(@lJFﬁS)QZ, {2(0) =0,
QmZQL

Associated transfer functions, in the same canbfocan:

_ S+P3 Ay s+ + 03
NP =grsprprp rpms 2 AOD =G p hy+po + b
K1(P) =M(p) thus translates into
P1+P3=ps,
P1+P2+P3=pr+p2+ps
P 10 2 = p1ps.
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For anyp, possible to find such that these equations are satisfied vamedrersa.
M(:) andM (-) are therefore structurally indistinguishable.
Impossible to know whether the structure chosennghs.

A possible way of removing ambiguity would be tomtor xp.

REMARKS

» As for identifiability, there are cases where noigiural conclusion can be drawn.
» Easy to prove that identifiability of two structares neither necessary nor sufficient for
their distinguishability.
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Chemical engineering example

Vector gas (heliun

—]-
100 ml/min

| Syringe

i o—

f

Trolley

-l
Reactant feed To mass
{ 1 ml/min spectrometer
! pr—
_ ~ _|
O
Reacto
6000 ml/min

Bellow
pump

used to study reaction

CO +3H CHz + H20.
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Prior considerations suggest two competing modectsires:
M(-) defined by

d
Cag X1= —(V + Ve)Xa + Vexz + VU,

d

Cza X2 = VeX1 — VeX2,
d

Csa X3 = VX1 — VX3,

d
Cage Xa=Vx3—Vxs,
ym — X41

where the parameters to be estimatedpare (C1, Co, C3, V)T, and whereV and C4 are
known from independent measurements.
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M (-) defined by

Cio R1= VR 1+ VU
C2%92=V19 1—- ViR,

CS%QF (V-v1)R1+vik2—VRs3,
Cas R4= VR3—\Ra,

Im=Ra,

where the parameters to be estimateare(C1, C2, C3, v1)T.

The state variables and®; (i = 1, ... , 4) are specific activities (percentagésabelled
atoms), theCj (i = 1, ..., 3) are surface concentrations andndv; are flow rates of carbon
atoms between adsorbed species.
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All parameters and state variables therefore hasgnarete meaning.

With the help of the Laplace-transform approach,ftilowing conclusions can be reached

« M andif are structurally indistinguishable,
e Mis s.Li. but not s.g.i. (three parameter vectangespond to the same i/o behaviour),

« M is s.Li. but not s.g.i. (six parameter vectavarespond to the same i/o behaviour).

One thus know$efore any measuremethiat it will not be possible to find a best sturet
and unique best model within this structure.

Such model structures may nevertheless be of sttgyeovided that their ambiguous nature is
recognized and taken into account.
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Conclusions

Choosing a suitable model structure is not an es@ence.

Testing structural properties, one can detect ptessilefects of the model structures
considered even before data are available.

Identifiability is important when the parameters state variables to be estimated have a
concrete meaning or when decisions are to be takehe basis of their numerical values.

The questions considered so far receaitative answers (yes / no / | do not know).

This raises aguantitative question: if M(:) is identifiable, what experiment should one
perform to estimate its parameters as precisepoasible?

A first step will be to quantify identifiability. fiis is the subject of Unit 2.
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