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Abstract:

Once a measure of identifiability has been chogdmecomes possible to maximize it with
respect to experimental conditions.

This pertains t@xperiment design.
Various approaches are presented and illustratethiygyle examples.

Specific difficulties raised by knowledge-based misdare addressed, and approaches for
tackling them are proposed.

More on the material presented here can be found in

Eric Walter and Luc Pronzattgdentification of Parametric Models from Experimental Data,
Springer, London, 1997.
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Despite their name, the data may not be a giveheoproblem!

We assume we have some degrees of fread@pecifye.g.,
 location of sensors and actuators,

* input shape,
e measurement times

Otherwise, experiment design stops here...

Poorly designed experiments may render data useless
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EXAMPLE

We wish to estimate the weightg , wo> andw3 of three objects @ O> and G with four
measurementsn a spring balance.

Random measurement errarassumed i.i.dM0, 62), plus unknown systematic ernag .
Intuitive approach:

First use the balanceith no objectto estimate systematic error: y(0) =wp + £0).

Then weigh the three objects successively: y(i) =wp +wj +&i),i=1,2, 3.
Easy to show that the estimatis = y(i) — y(0) of the weights| (i = 1, 2, 3)areunbiased

with var(i j) = 202 andcov(Vj, W) = 2, i #].
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Alternative approach

First use the balanceith all objects y(0) =wH +wWi +w5 +w3 + £0).
Then, as before, weigh the three objects succégsive y(i) =wp +w| + &i),i =1, 2, 3.
The estimates of the weights are then

i = YOLYSYD=Y® g 5 5522k 2k

They areunbiasegwith var(v i) = 02 andcov(vj, W) = 0, i # .
Much better for same price of four measurements:

* more accurate estimates (variances reduced bya fafdwo),
* independent estimates.
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Designing of an optimal experiment requires:
» choosing an optimality criterion,
» specifying the set of all feasible experiments,
» optimizing this criterion over this set.
This isconstrained optimizatio(unlike parameter estimation).

We assume here that the purpose is maximizing soeasure of parameter identifiability.

Optimality criterion thus related to how uncertgim the parameters is characterized.
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Let & describes the experimental conditions ofithescalar observation.

Simplest case is whefh is a scalare.g., measurement time.

Whennt suchobservations are taken, the concatenation of gisiyields the vector
== @17, 27, . &),

which characterizes all experimental conditionbamptimized.

A number of constraints o& must be taken into accoung.g. on the duration of the
experiments, the energy or amplitude of the inpils, minimum time between samples, the
total number of samples, working hours...

The resulting set of feasible values Iois =.
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Optimal experiment* then defined as
K V4
E° = argoptz. j(E),
werej(+) is some appropriate cost function.

Most often=* lies on the boundary of,, so a proper definition of. is essential.

Cost evaluation must be simple enough to allow easynization

— uncertainty irp characterized via FINF(p, =).

Next section describes commonly used criteria fiiinoal experiment design.
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Criteria

Under technicalities, maximum-likelihood estimaitbasymptatically Mp*, F—1(p*, =)).

Optimizing some scalar function of the FIMp, =)] then amounts to optimizing a scalar
measure of the asymptotic covariance of

Recall, however, that characterizing parameter iaicgy in a non-LP model by inverse of

FIM involves daring approximations, to which fevieahatives exist.

For the time being, we neglect the obvious andialypcoblem of dependency pm
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Most commonly used criterion 3-optimality:

=p =arg min z.- det F~1(p, &)
= arg max z.- det F(p, £)

=argmax z.- In detF(p, &)

D-optimal experiment thus minimizes the volume ®fraptotic confidence ellipsoids fpr
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Advantage

A D-optimal experiment isnvariant underany nonsingulareparametrizatiorthat does not
depend on the experiment.

Thus, the optimal experiment does not depend onuthiess in which the parameters are
expressed.

This seems natural to ask for, and is one of tasams for the popularity of D-optimality.

Drawback

A D-optimal experimentnay correspond to a very elongated confidencesslith with large
confidence intervals for the parameters.
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This is why other criteria may be preferred.,

A-optimality:

=a =arg min z.- trace F~1(p, 2),

which minimizes sum of squares of lengths of afessgmptotic confidence ellipsoids.

E-optimality:

=g =arg max g smallest eigenvalue of F(p, ),
which minimizes length of largest axis of asymmatonfidence ellipsoids.
In both casesnvariance under reparametrization is lost
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In what follows,we concentrate on D-optimality and friends

Ds-optimality
Sometimes, only some of the parametgesof interest.
Partitionp into (pT, pD)T, with

 pi1the parameters of interest (dpgn=19)
* p; the others (called nuisance parameters).

PartitionF(p, =) accordingly into

F11 FIZ}

Fo1 F22

F(p, =) :{
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F-1(p, =) then given by

(F11—F12F23F21)-1 —(F11—F1oF23F21)-1F10F723
—F23F21(F11 - F1oF23F21)~1 Fad+FodFoi(F11— FioFadFon)-TF1oFzs |

whereF22 is assumed not to be singular. Since gnlys of interest, we wish to minimize a
scalar function off11—F12F2% F2)-1.

Ds-optimal designthen maximizes

jDs(Z) =det (Fy; — Fi,F55 Fyy).
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EXAMPLE OF D-OPTIMAL DESIGN: NICE CASE

Consider again the FIR model

Ym(k, p) = pyu(k — 1) + pou(k — 2),

and assume
y(k) = ym(k,p*) + n(k),k =1,...,10,

with ni.i.d. 70, 02).

We have shown in Unit 2 that

—
e ou(u(i—1) Y u*(i—1)
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A D-optimal sequence of inputs is to be computedlen the constraint

—Umax S UK) S Upae kK=1,...,10

We must maximize ddi(p, =), or equivalently
. ~ . 2
P U (1) - Xiout(i—1) - [Z?=0u(l)u(l — 1)] .

An intuitive solution is u(l) = iumax,

with ++ —— ++ —— ++

S0 as to ensure Z?:o u(u(i —1)=0.

Another solution is PRBS, which can be used fohéigorder FIRsNeither depends an.
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What do we gain?
Takeu,,x = 1 and compare unit step input and D-optimal input.

With unit step inputcovariance of estimation error is

P=a*(RR)" =5 [ 9 18]

whereaswith D-optimal inpuj it becomes

p=q2 |10 ’
1
AT

Errors are no longer correlated and standard dem&smare divided by v10.
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EXAMPLE OF D-OPTIMAL DESIGN: NOT SO NICE CASE

Consider again

y(t) =pi exp(-p2t) + &),
with £i.i.d. MO0, d2).
Assume two observationst1) andy(t2) are to be made.

The problem is to choose measurement timeandt2, with t2 > t1 > 0, so as to estimate
p = (p1, p2)T as accurately as possible.

Here,

= = (t1, t2)7.
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We have shown in Unit 2 that

exp(—2p,ty) —p, texp(—2p,t;)

1 2
F E - _ '
(p, &) o2 Zk—l [—pltkexp(—ZPZtk) pit,zcexp(- 2p,ty)

= detF(p, 2) = ain pf(t2 —t1) 2 exp[-2(t1 + t2)],

and =D= (0 p—Z)T.

[Without the constraints, “solution” would involvegative measurement times...]

Optimal experiment depends on the values of thameters to be estimated!

This problem is common to non-LP structures, and o most knowledge-based modé
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The most classical (and simplest) approach theesiak= pO, wherepO is some (hopefully)
reasonable numerical value forThis is called

Local design

Optimization is most often iterative.
The type of algorithm to be used then depends o=l
When dim= is not too large, classical nonlinear programnmeghods may be used.

The cost functionp(z) = detF(p, =) generally has several local optimizers, so a alob
optimization method is recommended.

When the dimension & is large, it is preferable to use dedicated algord. The principles
of some of them are now very briefly presented.
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Exact design

Optimization is with respect to the variables diefinthe experiment to be performed.

Exchange algorithms

Let =k be the estimate & at iteratiork. Assume=k is not degeneraté.€., detF(p, =K) # 0).

*

At each iteration, one of the support poi§isof =k is replaced irEk+1 by &, with & andg
chosen so that
detF(p, =k+1) > detF(p, =K).

Exchange algorithms differ in the selectiorfbfind in the construction &f.
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DETMAX algorithm

Assume=K is not degenerate. If an additional observatiomewadlowed, characterized by
gnttl one would choos&t*l = &* with & such that deE(p, =k+) be maximized, where

If £ntt1 were to replace one of the support pointEkfone should obtaiEk+1 from =k+ by
removing&!* such that deE(p, =k+1) remains as large as possible.

This augmentation of the number of support poiaisowed by the removal of some of them
so as to keep the number of observations equa) t® called arexcursion.

The introduction of several support points befdre temoval of as many of them may be
considered (excursion of lengt®).
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Note: algorithms for exact design can only incretimevalue ofip(=), but convergence to
optimal experiment is not guaranteed.

In contrast, the methods presented now yield aajloptimum, sometimes at the price of
approximation to make the designed experiment impldable.

Distribution of experimental effort

When experiments are repeated, the numpef distinctéi’s is less than the total number of
observationsy. FIM can then be written as

Ne

Fp.2 =Y i— sE.psE.p).
~

wW(&))
Ne
with ri the number of repetitions of measurements undeuiitionsfi, soz ri =nt.
=1
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TheFIM per samplas then

Ne
o0, =Y oo 9E IIE D).
=1

with
. 0Vm
S l’ — - l,
y(¢.p) op (¢.p)
The proportion
T
Hi = —
ng

of observations &i can be considered age centage of experimental effort.
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Experiment= thus represented as a discrete distributipn

oelf i)

which is normalized, since

The i’s arerational numbergts =ri/ng, with ng fixed).

Kiefer and Wolfowitz showed that removing this cimast and extending design to any
normalized measure andrastically simplifies design.

This is the basis for the algorithms to be presentawv.

Parameter Estimation in Physiological Models, Esmonmer School, Lipari, September 2009.
25



Consider thus a normalized measmrené, satisfying J m(dE) = 1.

FIM per sample then takes the form

Fodp, m) = Jﬁ) 5, p)JE. p) m(dE).
&

Any matrix of this form can be obtained with a dete measure. We can thus restrict
attention tadiscrete experiments, associated with normalized discretasures on.

A discrete experiment usually cannot be implemerdggdctly for a given numbemn; of
observations, since the weigimsist satisfyi = ri/n;.
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In most cases, thg's must thus be approximated by rational numibing

This is why the approach is calledproximate design

Properties of optimal experiments

Kiefer-Wolfowitz equivalence theorem.

For D-optimality, design amounts to the minimizatiof the convex functior In det F over
the convex set of symmetric non-negative definiggrioeskpdp, m).

The matrixFpgp, mp) associated with a D-optimal design measnggis thus unique.

This does not imply uniquenessmfy.

The optimum can be characterized by first-orderatarity conditions.
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Design measurer; is D-optimal if and only if deEpgp, m1) is a maximum, or, equivalently,
if and only if for any measurap,

0 In detFpdp, (1 —)m1 + A'my]
oa la=0

<0.
Since
In detF F
dIn detk :trace(F—la—a),
oa 9,

a necessary and sufficient condition for D-optityadif my is

trace {Fp&(p, m1) [Fps(p, m2) —Fpdp, m1)]} <0, for anyms,
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or equivalently
trace Fﬁé(p, m1) Fpdp, m2)] < dim p, for anymp.

In particular, this must be true whem is the discrete measure with unit weight at a singl

support poin€, L] =,

A necessary condition for D-optimality ef is thus

d(&, my) < dimp, for any¢ 1,
with
1

w($)

d(§,m) = sy (&, P)Fps (p, m)sy (€, p).

One can easily check that this necessary condgialso sufficient

Note thatw(§) need not be known to computéé, m).
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Now, using the fact that

Ne
dim p = trace Fpi(p, m1) Fpdp, m1)] = Z LEd(&i, m1) |
1=1

where theyi's and &i's are respectively the weights and support poaftshe D-optimal
design measurey, the following theorem is obtained.

EQUIVALENCE THEOREM (Kiefer and Wolfowitz)

The following properties are equivalent:

 the design measurep is D-optimal,
+ the maximum ofi(&, mp) for L7 is equal to dinp,

* mp IS the measure: that minimizes the maximum d(E, m) for {D@
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EXAMPLE (continued)

Consider again
y(t) = pi exp(-p2t) + 1),

with €i.i.d. M0, d2). The number of observations to be made is no lospecified and a D-

optimal design measure is sought, with an admesgiloimain [0,00[ for the measurement
times. It can readily be checked that the desigasme

{ }
mD

d(t, mp) = 2 exp(—Pa2t) (1 — ot + p3t2e2 + p3t2) .

Is D-optimal. Indeed,

Sinced(0, mp) =d(1/p2, mp) = 2 = dimp, andd(t, mp) < 2 for allt > 0, mp is D-optimal.
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Algorithms based on equivalence theorem

Consider a non-degenerate design measlkir&rom equivalence theoremk is D-optimal if
and only ifd(, #K) < dimp for any& [ =.

Structure of algorithms then as follows.

Sep 1: Choose a discrete non-degenerate initial desigasoreml (a normalized discrete

distribution with at leashp support points, such that dgigp, ml) Z# 0). Choose some
positive toleranc@ << 1. Sek = 1.

Step 2: Find&* = arg max: d(§, nK). If d(§*, mK) < dimp + J, stop.

Sep 3: Setmk+l = (1 —ak)mK + akmg=, with mgx a measure with unit mass&t incrementk
by one and go to Step 2.

Step sizenk remains to be chosen.
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Fedorov uses the optimal value
d(&*,mk) — dimp
dimp (d(&*mk) — 1)’

ay =

while Wynn uses a predefined sequenag} that satisfies
ay > 0, limk_,oo ap = 0, Z;iozl a, = ©0,

for instance
1

Ay = .
K™ k41

Provided a global maximizeﬁ* IS computed at Step Doth algorithms converge to a D-
optimal measure, a considerable improvement owealdporithms for exact design

No support point is ever removed from the desigasues. Easy to modify the algorithms to
avoid this drawback.
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Applications

Optimal measurement times

When the number of observations is small, measuretimes can be individually optimized.

When the number of observations is large, optinonabf measurement times will often be
restricted to determination of optimal samplingyfrencies.

Optimal inputs

For dynamical systems, the result of each obsemwvalepends on previous inputs, so the
experimental condition& for observation depend on those for others. The search will be for
the optimal input from a predefined class of adrlssnputs, which may be parametreed,,
weighted superposition of inputs with simple shapesot.
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Parametric inputs

In biology, the admissible inputs are often theesppsition of basic signals with given
shapes. For instance, one may consider the sujerpast

» rectangular pulsea[H(t —tij) —H(t —Tj —tj)], whereH is Heaviside’s step function,
* Impulsesojdt — 1j), wheredis Dirac’s distribution,
e polynomialsy, X, d t*.

The parameters that characterize an inputare then respectively

 the starting timej, amplitudea; and duratiorTj of each rectangular pulse,
» the timer and aredj of each impulsely may correspond to a dose administered),
 the coefficientslk of the polynomials.

The design problem then amounts to a nonlineamogdition problem with respect &
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EXAMPLE

Consider the system

d
gt Ym(t P*) = Pp'ym(t, p*) +u(t), ym(0-, p*) =0,  y() =ym(t, p*) + &),

wherep” is the (scalar) parameter to be estimated, witid. MO0, ¢2).
We wish to determine a D-optimal input of unit afe@, a unit dose), in the family

u) = @-@&Y + 7 [HO-HE-T)], T>0,05a'<1.

Only one observation is to be made. We also wistinth the optimal measurement tirhe
with the constraint & t < T. The experiment to be performed is thus charasdrby

==(a,T,t)".
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The response of the model foc@<T s

a
ym(t, p) = + exp(pt) [1-a(1 +oT )]
The FIM, here a scalar, can be written as
oy =+ a 1. a
Fp 3=, {exp(p0lr ~t+ A+ )] —57 12

and the D-optimal experiment is

1
e =\T
—D (O’T’p) ’

with T arbitrary. The D-optimal input in the family codsred is thus the unit impulse.
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Nonparametric inputs

The restriction to parametric inputs must sometirnesrelaxed. Determining an optimal
parametric input may serve to initialize input d@sin a larger class. Some constraints on the
shapes of admissible inputs, easily be taken iotmwant for parametric inputs, may raise
difficulties for nonparametric inputs.

Simultaneous choice of inputs and sampling times

When the input is parametric, the components of thetor = that characterizes the
experiment may consist of timesampling times and the parameters defining thetisignal.

When the input signal is nonparametric, the constva of an optimal sampling schedule
becomes difficult.
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Robust design

Can we avoid assuming that we know the value oprameterg that we wish to estimate?

Sequential design
| | y(=) -
Experimentation ———m= Estimation
A
N\
=i P
zi+l
| —1+1 |- Experiment design
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What one shouldot do:

Estimatef(i) from observationg(=i), fori =1, ..., k,
Estimatef k as the average of tifi§i) ’s:

K
pr=ic> B0
I=1

Usually, thisdoes not converge @ ask tends to infinity.

To guarantee convergencefbk to p*, the estimation off k should make use of all previous
observationsi(e, y(Z2), ... ,y(ZK)).

The designed experiment will then tend to the ogliexperiment fop*.
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Repetition of experiments often impossible and esmot experiment must be designed.
Even if design is sequential, each design stepldhnake use of all information available.

Non-sequential design approaches that determinenglesexperiment taking all prior
uncertainty inp into account are thus useful.

Two types of robust-design procedure will be coaed.
They differ in
* how prior information is characterized,

» the importance attached to the risk of designing>@eriment badly suited to some rare
parameter values.
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Average optimality

Relies on a probabilistic description of the puoicertainty imp.

Prior distribution 7p(p) may have been inferred from previous observaticoigected on
similar processes or individuals in a population.

Criteria

We only consider cost functions related to D-optitpabut others could be treated similarly.

Using the prior distribution/p(p) makes it possible to remove the dependence duy
considering the expectation of the original cosiction.

Whereas cost functions —defp, =), —In detF(p, =) and 1/deF(p, =) lead to identical D-
optimal designs, the introduction of expectatiorakes these approaches different.
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ElID-optimal design minimizes

JEID(2) = E {1/detF(p, 2)}.

ELD-optimal design maximizes

JELD(Z) = E {In detF(p, =)}.
EID-optimal experiment depends on parametrizatontrary to ELD-optimal experiment.

EXAMPLE (continued)

Consider again the system:
y(t) =pi exp(21) + &1),

with £i.i.d. M0, 02). We look for two optimal sampling times, to estilep] andp? .
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For a nominal valug9
=p = (0, 1p9)T.

If 7p(p2) uniform over [1, 10],
=EID = (0, 0.139).

If 75(p2) M5.5, 1.%),
=eip = (0, 0.161).

For the two densities above,

=eLD = (0, 0.182).

Except in very simple situations, an optimal expemt cannot be found analytically, and
numerical procedures are required.
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Algorithms

Exact design.

Stochastic approximation allows a cost functioe lik
JE(R) = E {i(p, =)}

to be optimizedvithout having to evaluate expectations

Simplest version is thetochastic gradieralgorithm

. k :
—k+1= Ek—Akéj(p—_’_) = =Tk
o=

At each iteratiork, a valuepk is randomly generated according7is{p).
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The sequence of scalar stehsmust satisfy
o'e) — e 2
A >0, Xpoqdg = 0, Xpoq A% < o,
and the most popular choice is the harmonic seguenc

a
k+ 1

a> 0.

Speed of convergence is very sensitive to the ehofithe scalaw in the sequencéy.

Componentwise normalization of the gradient all@asier choice of a suitable value tor
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The algorithm thus modified becomes

Ek+1:Ek_/]k/\kM:’E) |= ==k

where/\y is a diagonal matrix, thi¢h diagonal entry of which is

—imax — —Imin
/Ikii =

k —
oj(pn, =
> ¢ (—Z”_-. = -z
—I
n=1

where =inax and =imin are upper and lower bounds on the possible valfies.
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If Ak =0a/(k + 1), this implies

=t = =9 = £ X Simax—Zimin)
The scalawr is then the relative length of the first stepygital choice isy = 0.1.

Note that convergence to a global optimum is natrgnteed.

Approximate design
The equivalence theorem can extended to averagealmtesign.

Global convergence can be guaranteed, but calooatvill be extremely heavy unless the
prior distribution forp is discrete.
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Maximin optimality

Sometimes, the best experiment in the worst cirtamees should be preferred to the best
one on average.

This depends on the importance attached to (uglikghrameter values whose estimation
with an average-optimal experiment might be veacaourate.

Maximin optimal design requires the definition adetP of prior admissible values faqr.

Using P makes it possible to remove the dependencp by considering the worst possible
value of the original cost function.

We consider a criterion based on D-optimality, thig is applicable to others.
MMD-optimal design maximizes
JMMD (Z) = min,p det F(p, E).
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EXAMPLE (continued)

Consider again
y(t) =pi exp(21) + 1),

wheree¢ is i.i.d. M0, 02). We search for two sampling times to estimatephemeterpi
andpb , when the prior admissible values fprbelong to

P2 = [p2min, P2max-

The MMD-optimal experiment then coincides with ixptimal experiment fop2 = p2max:

—_ 1
- _ T
—MMD (0, p2max) .

The maximin-optimal experiment sometimes coincidéth a D-optimal experiment for a
particular value of the model parameters that candetermineda priori. This greatly
facilitates computation.
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When the maximin-optimal experiment cannot be foandlytically and does not coincide
with a particular D-optimal experiment, specifidiopzation algorithms must be used.

Algorithms

The goal is to finEmmD (in =) that maximizes

jMMD (Z) =miny; det F(p, £).

What one shouldhot do: alternate maximization with respect3ocand minimization with
respect t of det F(p, £). This may cycle forever.

The moststraightforward approachises brute force and maximizpgmp by a general-

purpose nonlinear-programming algorithm, each atalo ofjmMmD (=) being the result of a
minimization with respect tp using a second nonlinear programming algorithm.

May require a huge amount of computation
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Relaxation algorithm (for exact design).

Problem redefined as findirgvmp in = that maximizes the scalarunder the constraints

ivmp(E) = a, Op0Ox.
This has an infinite number of constraints. Rel@mxaintroduces a finite number of them:

Sep 1: Choose initial valu@l in P, and define a firsset of representative valugs = {p1}.
Setk = 1.

Step 2: Find =K = arg maxz.z minysk det F(p, E)

Step 3: Find  pk+l =arg min,.; det F(p, EX).

Step 4: If j(pk*+1, =K) > min, .k det F(p, EF) — & wheredis some positive tolerance, accept
=k as an approximate solution. Eiseludepk+1in &k, incremenk by one and go to Step 2.

Stops after a finite number of steps. A globalmpmation algorithm is recommended.
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Conclusions
Experiments are always constrained, and the contstnaust be taken into account.
Evaluation of the FIM is simple enough to allow strained optimization.

Knowledge-based models are most often not LP, sw BFHM depends on the value of the
parameters to be estimated, which is a very seddfisulty.

Whereas local design assumes a known prior nonvialale forp, the methods presented
allow uncertainty in this nominal value to be taket® account.

The dependence of the optimal experiment on angrahantity €.g., a nuisance parameter)
with an unreliable prior value could be treatethia same way.

The first three units have assumed &) could be made identifiable (at least locally).

Unit 4 will show how the concept of identifiabiligan be bypassed.
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