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Abstract:

While the answer to the test of a model for pra@ntifiability is qualitative (yes / no / sorry, |
do not know), one would like to knolmow much the parameters of interest are identifiable.

This relates t@ssessing parameter uncertainty.

This unit concentrates on methods based orridl®r information matrix. Their advantages
and limitations are delineated, and alternativea®are briefly mentioned.

More on the material presented here can be found in

Eric Walter and Luc Pronzatbdentification of Parametric Models from Experimental Data,
Springer, London, 1997.
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For knowledge-based models, findipdgs not enough, in general.
Important to evaluate the uncertainty attachepl. to
Several methods can be used (and possibly combined)

None is without drawbacks.

We shall concentrate on methods based on the Rigloemation matrix (FIM), because
* they come at almost no cost,
 they nicely connect to (local) identifiability,
» they are simple enough to be usable (in Unit 3efgreriment design.

Alternative approaches will be briefly mentiondahugh.
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FIM-based methods

Let f(.) be arunbiased estimatorof p*, i.e., such that

) S) =p*
yepr PO =P

[If it were possible to estimaf® an infinite number of times, then the mean ofékémates would
coincide with the true valug".]

The covariance matrix
s *rH(vS) —p*1TY.
= ysp {Ipys) —p*IIPYS) —p*IT)

quantifies how the estimat@sare spread arournd.

Parameter Estimation in Physiological Models, Esmonmer School, Lipari, September 2009.



One would like the estimat@s to be as concentrated as possible ar@indf course.

P 1(.) with covariance matrif1 is more efficient thanf 2(.) with covariance matrif2 if P1 < P2.
P1 <P2 & P2 -P1 positive-definite= all eigenvalues oP2 — P1 are strictly positive

A natural request is thus to maRes small as possible.

Cramér-Rao inequality provides a lower bound totvaaa be achieved.

Cramér-Rao inequality

Under technicalities, the covariane®f any unbiased estimator pf satisfies
P>F-1(p%),

with F the FIM.
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FIM can be computed in either of two ways:

0 0 52
Fp) = ) {lap In 780SPNI5, In 740Sp)ITE = - B {Gpopt 1N 780SP):

* In 7%(yS|p) is the log-likelihood of the datg.
. [% In 7§,(yS|p)] is itsgradient

5 - - .
opopT In 73(ys|p) is its Hessian.

If P =F-1p"*) then the estimator &fficient.

FIM invertible = all parameters (locally) identifiable.
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Nice case: LP model + Gaussian noise

Assume
yS = Rp* + €,

whereg is i.i.d. MO, %), with known covariance.

Likelihood:
T5(yslp) = [(279t detX]-1/2exp [—% (ys—Rp) TZ-1{ys—Rp)].

Gradient of log-likelihood:

0
ap N 78(ysip) = RT2-1yS—Rp),
Hessian of log-likelihood:

02
= _RTI>-1
dpopT In 74(yslp) = RT2-1R.
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FIM then given by:
02

Fip) == E { 00T In 78(ySlp)} = |55|p {RTZ-1IR} = RTZ-IR. @

ysip y

F(p) therefore does not depend on the value GfERY convenient!)
Least-squares estimajaveighted by inverse of the noise covariance,
D Is = (RTZ-1R)-IRTZ-1ys,
IS unbiasedandefficient Its covariance matrix is
Pis= (RTZ-IR)-1=F-1,
andPj|s can be obtain at little or no cost (hidden in¢benputation oﬁ ls).

95% confidence regions for the parameters then teadgrive.
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EXAMPLE

Consider the (discrete-time) finite-impulse-resmomedel (FIR)
Ym(k, p) = pyu(k — 1) + pu(k — 2),
both LP and LlI.
Assume
y(k) = yu(k,p*) + n(k), k=1,..,610,
with n(K) i.i.d. M0, d2).

Then
y(l)

y(10)
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So
F(p) =R'T'R=—=
?) o Yo u(@u(i— 1) 7=0

FIM depends o, but not om.

Unfortunately, most knowledge-based models are not LP!
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Not so nice case: non-LP model + Gaussian noise

Maximume-likelihood estimator then (at beasymptotically normal andasymptotically efficient.

law
Pmi— Mp", F-Y(p"))
as number of data points tends to infinity.

Hence the idea of characterizing the uncertainfyin by F-4f mi).

Assume, for instance, that
y(ti) =ym(ti, p*) + &ti), i=1, ... ,n,

where theg(tj)’'s are independent random variables distributgal aﬁ ), with oﬁ known.

Parameter Estimation in Physiological Models, Esmonmer School, Lipari, September 2009.

11



Log-likelihood:

nt : :
In 7§(ys|p) = (term independent q) —% Z () _)g;(tl’ P)J2 :
i=1 !
Gradient of log-likelihood:
Nt
35 I 75(/3%p) = Ziig (8) —yiti, P)] 55 Y, ).
1=

FIM:
0 0
Fp) = E {l5p N 780SP)G, In 74Pt}

Nt Nt
~ 1 dym(tk p) | | 1 Oym(ti, p)
F(p) _ySp{E o ap D -ymlicp) % V) Y, P g ot
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Since

vSp {[y(t) —ym(tk, P)ILY(E) —ym(ti, )} = of dk,

previous nightmare of a formula simplifies into

Nt

1 oym(ti, p) oym(ti, p)

F‘p)zzag o opT
i=1

approximation of the Hessian used in the Gauss-dleatgorithm, probably already computed.
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EXAMPLE

Consider the (non-LP) model

Ym (tx, P) = py exp(—pqty) for tx =0,

and ssume that

y(tx) = Ym(tr, p*) + n(k), k= 1,2,

with n(k) i.i.d. M0, 02).

Then
0y 0 (ED) |
ym(tp) _ | op | _[ exp(—Dpz2tx)
op 0¥ m (trP) —p1trexp(—p2ti)l’
op»
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SO

2

1 exp (—p,ty)

F(p) = ;2 [—P1 tkexp(i b, tk)] - [exp (=p,tx)  —p teexp(=p,t;) ]
k=1

exp(—2p,t;) —p, texp(—2p,t;)
—p, teexp(—2p,t,)  pitrexp(—2p,t,) |’

_ 1 o2
—22k=1[

FIM now depends on measurement times@and @
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Using F—1{p mI) to characterize the uncertaintydgmelies on the followinglaring approximations

« F-1p*) is substituted foPm|, although number of observations finite, and somet quite
small, sob m is generally biased and Cramér-Rao does not apply.
o F-Yf m) is substituted foF—1(p*).

Despites its shortcomings, this approach has tharadge of requiring far less computation than
the alternative methods.

Results are more credible insofar as
* number of data points is large,

* nonlinearity of the model ip is mild,
* measurement errors are independently distributddhame small magnitudes.
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Monte-Carlo methods

Parameter estimation can be summarized as follows:

Experiment Estimal _ N
System - Datays » Estimatep.

Identical experiments yield different results, dog@erturbations and noise.
Before data collectiorys is thus a random vector, and s@(gs) :

Estimatior

] N
Random vectory> » Estimator p(y9).
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Actual measurements yield a particular realizatdrys, with which a particular estimate
A(ys) is associated.

Monte-Carlo methods aim to determine statisticahrabteristics of the population of
estimates for all possible realizationsysfi.e., all possible experimental results).

Fictitious data vectors are generated for this purpose:

A Perturbatior
Run of modelM(p) » Fictitious dataySt.

Eachy® gives a fictitious estimatgf = f(ysf) , computed as for real data.

Estimatior A
{ysh = {pf},
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Most often, pf is taken to be a normal random vector, and itgridigion is simply
characterized by the empirical mean and covariamateix of the fictitious estimates.

This method thus requires a large numbessbimations (anda fortiori of model runs).

The generation of credible fictitious data requiseesalistic model for the perturbations, as
provided by (successful) maximume-likelihood estimiat

Interesting as it Is, this approach seems mucltdoaplicated to allow
optimization of identifiability through experimedesign (see Unit 3),
and we shall not consider it further.

The approach to be considered next is one of tredmients that will allow bypassing the
notion of identifiability (see Unit 4).
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Bounded-error set estimation

Two kinds of error cannot be avoided when estinggpiarameters from experimental data.
The first corresponds to measurement errors @ p&turbations.

The second corresponds to structural errors, dtleetdact that the model structure is at best
an approximation of reality.

When

» the parameters to be estimated have a concretamgdg&nowledge-based models),
» or decisions have to be based on their numeridaksdprediction, diagnosis, control...)

one should try to evaluate how these two typesrof affect the estimates.
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Usual statistical framework assumes the data ctedupy realizations of independent random
variables:

« Estimator obtained, e.g., by maximum-likelihood.
* Quality of estimate characterized by taking advgataf properties of FIM.

To already mentioned limitations, one may add thistis badly adapted to

» structural deterministic errors, e.g., when a simple linear model is used to desdhe
behaviour of a complex nonlinear model, with petifepeatable deviations,

 errors for which the hypothesis of mutual indepergds not tenable,
 errors for which only prior information is in thertn of bounds.

Bounded-error estimation partly overcomes thesgdtmans.
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Bounded-error estimation aims to characterize the set of all valuespouch that the
associated errors lie between given prior bounds.

Considerg.g., an output error
ey(k, p) =y(K) —ym(k, p), k=1, ...,n,
wherey(k) is thekth scalar measurement, anid(k, p) is the corresponding model output.
Assumep to be feasible if and only if
eyt (k) <ey(k p)<e)(k), k=1,...,n,
where theboundsej);’ (k) ande})"(k) are knowra priori and differ.

These bounds may come from technical specificatempirical knowledge, or intuition.
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We aim to characterize the set of all feasible eslofp.

Let Pnt be the set associated with the fiistlata.

Providedey (k) # ejl)’[ (k), the inequalities associated with tkta measurement can be put in the
standard form:

-1<y(k) =ym(k,p) <1,
with

2y(K) — eV (k) —ef(k
500 == ety 209 Tk =gy g ke )

We assume this transformation has been perfornmeldciaop the upper bars.
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The set op values that satisfy the constraints associatell yk) is then:
[Ik={p e R | L <y(k) —ym(k p) <1},

Pnt Is the intersection of the setk (k= 1, ... ,n).

Pt

* is aset estimatqr
* may be empty if the hypotheses are wrong,
 is guaranteed to contapi (f it exists).

Size ofPntis a measure of the uncertainty wh

The algorithms used to characterizg depend on whethd(:) is LP (more generally on whether
the error is affine in the parameters).
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LP model structures

Consider an LP model structure, defined by
ym(k, p) = rT(k)p,
and aroutput error.

Since regressor vectofk) is assumed knownjk is a strip in parameter space, bounded by parallel
hyperplanes

H+={p ek |y(K) —rT(kp =1}

and
Fi-={p € Rnp |y(K) —rT(k)p = -1}

As the intersection of such strips; is a convex polyhedron
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Provided the (k)'s spank"p (condition for identifiability),Pn: is bounded, and thus a polytope
Pnt may become very complicatedhifand especially dimp are large.
Hence the interest of constructing sets with sinspkgpes guaranteed to encloge

The most widely used are ellipsoids, orthotopesd€bh parallelotopes and polyhedra with limited
complexity €.g., simplexes).
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Recursive determination of outer ellipsoids

Data taken into account one after the other to tcoctsa succession of ellipsoids containing all
values ofp consistent with all previous measurements.

This is easily implementable on-line (possibly @alrtime).

After the firstk — 1 observation$k-1 is characterized by the ellipsoid

E@ kL M) ={p| p-PkHTMrd 1(p B k-2) < 1},
wherep k-1is the centre, andl k-1 a positive-definite matrix that specifies size anigntation.
The volume of this ellipsoid is

vol E(P k1, Mk-1) = ALdim p) ~/detM k-1,

with ¢{dim p) the volume of the unit ball in parameter space.
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Simplealgorithms are available for computifidc andM in such a way that

EPK MK 2 EPQ 1, M=) N [k 2 Py

P, A

»Dl

One of them minimizes the volumelof k, M), which amounts to minimizing ditk.
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Non-recursive determination of outer boxes

Determination of parameter uncertainty intervalsédach components pfamounts to finding the
smallest box with edges parallel to the axes emmagy;.

Complexity of resulting description ofn is moderate: 14 scalars for a box, versus
np(np + 3)/2 scalars for an ellipsoid, wheng = dimp.

The bounds of theh parameter uncertainty interval are given byrtheimal and maximal values
of the cosi(p) = pi, when the feasible domain fpns Pnt, which is defined by linear inequalities.

The cost and constraints being linear, thesends can be computed by linear programming

Determination of the box thus requires solution2of linear-programming problems, withni2
linear constraints each.
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Exact description

When the error is affine ip, Pt can be written as
Pnt ={p [Ap = b},
and computed recursively.

Each observation provides two inequalities, whightaken into account one after the other.

The basic idea of the algorithm is as follows:
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Assume that the polyhedrar-1 formed by the first — 1) inequalities is

NS
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The only case deserving discussion is when theineguality cuts inta)k—1:

1 2’ 2

Qk

31

4~

Important to keep track of adjacencies betweenocest.
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Non-LP model structures

The rule for knowledge-based models.

Posterior feasible sétn: no longer a polyhedron, may be non-connected, évemodel s.g.i.
Phenomenon best understood in the space of obssivat

A Y1)

exp

y(t2)
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Set inversion

Yields global results even in the case of non-LP model structures. Sageddfor more details.

Assume posterior feasible set fodefined by
Pe={p U o e(p) L E},
wherelPg is a prior box in parameter space, and a given box in error space. Then
Pnt = e-1(E) N Po,
wheree-1lis the inverse function (in a set-theoretic sen$dhe error functiore.

DeterminingPnt is thus aset-inversion problem, to be solved though approximate but guesd
computations.
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Subpaving K, of all boxes that have been proved feasible

% Subpaving K of all boxes still indeterminate

Subpaving Kyn of all boxes that have been proved unfeasible
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Conclusions

A variety of techniques available to characteriaeameter uncertainty.
None can claim to be the best.

Method based on the inverse of the FIM is the sasiphnd most economical, but only justified
asymptotically, except in important but very part&r cases.

All methods rely on hypotheses that are not necissatisfied in practice, so one must be careful
in interpreting their results.

The experiment performed (location of sensors aatliadors, shape of the inputs applied,
measurement times...) affects the uncertainty irpirameters.

Thus important to choose the experiment well, taimee identifiability.
This isexperiment desigrto be considered in Unit 3.
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