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Abstract:  
 
Once a measure of identifiability has been chosen, it becomes possible to maximize it with 
respect to experimental conditions.  
 
This pertains to experiment design.  
 
Various approaches are presented and illustrated by simple examples.  
 
Specific difficulties raised by knowledge-based models are addressed, and approaches for 
tackling them are proposed. 
 
 
More on the material presented here can be found in 
 
Eric Walter and Luc Pronzato, Identification of Parametric Models from Experimental Data, 
Springer, London, 1997.  
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Despite their name, the data may not be a given of the problem! 
 

 
 
We assume we have some degrees of freedom to specify, e.g., 
 

• location of sensors and actuators, 
• input shape, 
• measurement times 

 
Otherwise, experiment design stops here... 

 
 

Poorly designed experiments may render data useless... 
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EXAMPLE 

 
We wish to estimate the weights w1*  , w2*   and w3*   of three objects O1, O2 and O3 with four 
measurements on a spring balance.  
 
Random measurement errors ε assumed i.i.d. N(0, σ2), plus unknown systematic error w0*  .  
 
Intuitive approach: 
 
First use the balance with no object to estimate systematic error:        y(0) = w0*   + ε(0). 
 
Then weigh the three objects successively:                           y(i) = w0*   + w i*   + ε(i), i = 1, 2, 3. 
 
Easy to show that the estimates ŵ i = y(i) – y(0) of the weights w i*  (i = 1, 2, 3)  are unbiased, 

with var(ŵ i) = 2σ2 and cov(ŵ i, ŵ j) = σ2, i ≠ j.  
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Alternative approach:  
 
First use the balance with all objects:                                 y(0) = w0*   + w1*   + w2*  + w3*   + ε(0). 
 
Then, as before, weigh the three objects successively:           y(i) = w0*   + w i*   + ε(i), i = 1, 2, 3. 
 
The estimates of the weights are then 

 

ŵ i =  
y(0) + y(i) – y(j) – y(k)

2  ,        i = 1, 2, 3, i ≠ j, i ≠ k, j ≠ k. 

 
They are unbiased, with var(ŵ i) = σ2 and cov(ŵ i, ŵ j) = 0, i ≠ j. 
 
Much better for same price of four measurements: 
 

• more accurate estimates (variances reduced by a factor of two), 
• independent estimates.  
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Designing of an optimal experiment requires: 
 
• choosing an optimality criterion, 
• specifying the set of all feasible experiments, 
• optimizing this criterion over this set. 

 
This is constrained optimization (unlike parameter estimation). 
 
We assume here that the purpose is maximizing some measure of parameter identifiability.  
 
Optimality criterion thus related to how uncertainty in the parameters is characterized.  
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Let ξξξξi describes the experimental conditions of the ith scalar observation.  
 
Simplest case is when ξξξξi is a scalar, e.g., measurement time. 
 
When nt such observations are taken, the concatenation of their ξξξξi’s yields the vector  
 

ΞΞΞΞ = (ξξξξ1T, ξξξξ2T, … , ξξξξntT)T, 
 
which characterizes all experimental conditions to be optimized.  
 

A number of constraints on ΞΞΞΞ must be taken into account, e.g. on the duration of the 
experiments, the energy or amplitude of the inputs, the minimum time between samples, the 
total number of samples, working hours…  
 

The resulting set of feasible values for ΞΞΞΞ is . 
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Optimal experiment ΞΞΞΞ*  then defined as 
 �� = arg opt �� �	�
, 
 
were j(·) is some appropriate cost function. 
 

Most often ΞΞΞΞ*  lies on the boundary of , so a proper definition of  is essential. 
 
 
Cost evaluation must be simple enough to allow easy optimization 
 

⇒ uncertainty in p characterized via FIM F(p, ΞΞΞΞ). 
 
Next section describes commonly used criteria for optimal experiment design. 
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Criteria 

 
Under technicalities, maximum-likelihood estimator is asymptotically N(p* , F–1(p* , ΞΞΞΞ)).  
 
Optimizing some scalar function of the FIM F(p, ΞΞΞΞ)] then amounts to optimizing a scalar 
measure of the asymptotic covariance of p.  
 
Recall, however, that characterizing parameter uncertainty in a non-LP model by inverse of 
FIM involves daring approximations, to which few alternatives exist. 
 
 
For the time being, we neglect the obvious and crucial problem of dependency in p.  
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Most commonly used criterion is D-optimality: 
 
 

ΞΞΞΞD = arg min �� det ���	�,    Ξ
  
 

= arg max �� det �	�,    Ξ
 
 

= arg max ��  ln  det �	�,    Ξ
 
 

 
 
D-optimal experiment thus minimizes the volume of asymptotic confidence ellipsoids for p.  
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Advantage 
 
A D-optimal experiment is invariant under any nonsingular reparametrization that does not 
depend on the experiment. 
 
Thus, the optimal experiment does not depend on the units in which the parameters are 
expressed. 
 
This seems natural to ask for, and is one of the reasons for the popularity of D-optimality. 
 
 
Drawback 
 
A D-optimal experiment may correspond to a very elongated confidence ellipsoid, with large 
confidence intervals for the parameters.  
 
 
  



 

 

Parameter Estimation in Physiological Models, Euro Summer School, Lipari, September 2009. 
12 

 

This is why other criteria may be preferred, e.g.,  
 
 
A-optimality: 
 

ΞΞΞΞA = arg min �� trace ���	�,    Ξ
, 
 
which minimizes sum of squares of lengths of axes of asymptotic confidence ellipsoids.  
 
 
E-optimality: 
 

ΞΞΞΞE = arg max �� smallest eigenvalue of �	�,    Ξ
, 
 

which minimizes length of largest axis of asymptotic confidence ellipsoids. 
 
In both cases, invariance under reparametrization is lost. 
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In what follows, we concentrate on D-optimality and friends. 
 
 
Ds-optimality 
 
Sometimes, only some of the parameters are of interest.  
 
Partition p into 	�"#, p$#
#, with 
 

• �1 the parameters of interest (dim �1 = s) 
• �2 the others (called nuisance parameters).  

 
Partition F(p, ΞΞΞΞ) accordingly into 
 

F(p, ΞΞΞΞ) = 






F11 F12

F21 F22
  . 
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F–1(p, ΞΞΞΞ) then given by 
 









(F11 – F12F22–1F21)–1 –(F11 – F12F22–1F21)–1F12F22–1

–F22–1F21(F11 – F12F22–1F21)–1 F22–1+F22–1F21(F11 – F12F22–1F21)–1F12F22–1
  , 

 
where F22 is assumed not to be singular. Since only p1 is of interest, we wish to minimize a 

scalar function of (F11 – F12F22–1 F21)–1.  
 
Ds-optimal design then maximizes 
 

jDs(ΞΞΞΞ) = det 	�"" ' �"$�$$�"�$"
. 
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EXAMPLE OF D-OPTIMAL DESIGN: NICE CASE 

 
Consider again the FIR model 
 ()	*, �
 + ,"-	* ' 1
 . ,$-	* ' 2
, 

 
and assume (	*
 + ()	*, ��
 . /	*
, * + 1, … , 10, 

 
with n i.i.d. N(0, σ2). 
 
 
We have shown in Unit 2 that 

 

F(p, ΞΞΞΞ) = "23 4 ∑ -$	6
789: ∑ -	6
-	6 ' 1
789:∑ -	6
-	6 ' 1
789: ∑ -$	6 ' 1
789: ;. 
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A D-optimal sequence of inputs is to be computed, under the constraint 
 '-)<= > -	*
 > -)<=,   * + 1, … , 10 
 
 
We must maximize det F(p, ΞΞΞΞ), or equivalently  
 ∑ -$	6
789: · ∑ -$	6 ' 1
 ' ?∑ -	6
-	6 ' 1
789: @$789: . 

 
An intuitive solution is                      -	6
 + A-max, 

 
with                                               . . ' '  . .  ' '  . .   
 

so as to ensure     ∑ -	6
-	6 ' 1
 789: = 0. 

 
Another solution is PRBS, which can be used for higher-order FIRs. Neither depends on p. 
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What do we gain? 
 
Take -)<= + 1 and compare unit step input and D-optimal input. 
 
With unit step input, covariance of estimation error is 
 B + C$DE#EF�"

 = 
23
7 G 9 '9'9 10I, 

 
whereas with D-optimal input, it becomes 
 

B = C$ J "": 0
0 "":

K. 

 
 
Errors are no longer correlated and standard deviations are divided by L √10. 
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EXAMPLE OF D-OPTIMAL DESIGN: NOT SO NICE CASE 

 
Consider again 
 

y(t) = p1*   exp(–p2*  t) + ε(t), 
 
with ε i.i.d. N(0, σ2).  
 
Assume two observations y(t1) and y(t2) are to be made.  
 
The problem is to choose measurement times t1 and t2, with t2 > t1 ≥ 0, so as to estimate 
p = (p1, p2)T as accurately as possible.  
 
Here,  
 

ΞΞΞΞ = (t1, t2)T. 
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We have shown in Unit 2 that  
 

�	�, �
 = 
"23 ∑ N exp	'2,2O*
 ',1O*exp	'2,2O*
',1O*exp	'2,2O*
 ,12O*2exp	'2,2O*
 P$Q9" . 

 

⇒ det F(p, Ξ) = 
1

σ4
  p12(t2 – t1) 2 exp[–2p2(t1 + t2)], 

and                                                           ΞΞΞΞD = R0 "S3T#
. 

 
[Without the constraints, “solution” would involve negative measurement times...] 
 
Optimal experiment depends on the values of the parameters to be estimated! 
 

This problem is common to non-LP structures, and thus to most knowledge-based models �.  
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The most classical (and simplest) approach then takes p = p0, where p0 is some (hopefully) 
reasonable numerical value for p. This is called 
 
 

Local design 
 
Optimization is most often iterative.  
 
The type of algorithm to be used then depends on dim ΞΞΞΞ.  
 
When dim ΞΞΞΞ is not too large, classical nonlinear programming methods may be used.  
 
The cost function jD(ΞΞΞΞ) = det F(p, Ξ) generally has several local optimizers, so a global 
optimization method is recommended. 
 
When the dimension of ΞΞΞΞ is large, it is preferable to use dedicated algorithms. The principles 
of some of them are now very briefly presented. 
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Exact design 

 
Optimization is with respect to the variables defining the experiment to be performed.  
 
 
Exchange algorithms 
 
Let ΞΞΞΞk be the estimate of ΞΞΞΞ at iteration k. Assume ΞΞΞΞk is not degenerate (i.e., det F(p, ΞΞΞΞk) ≠ 0).  
 

At each iteration, one of the support points ξξξξi of ΞΞΞΞk is replaced in ΞΞΞΞk+1 by ξξξξ* , with ξξξξi and ξξξξ*  
chosen so that  

det F(p, ΞΞΞΞk+1) > det F(p, ΞΞΞΞk). 
 

Exchange algorithms differ in the selection of ξξξξi and in the construction of ξξξξ* . 
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DETMAX algorithm 

Assume ΞΞΞΞk is not degenerate. If an additional observation were allowed, characterized by 
ξξξξnt+1, one would choose ξξξξnt+1 = ξξξξ* , with ξξξξ*  such that det F(p, ΞΞΞΞk+) be maximized, where 
  

ΞΞΞΞk+ = 




ΞΞΞΞk

 ξξξξnt+1
  . 

 
If ξξξξnt+1 were to replace one of the support points of ΞΞΞΞk, one should obtain ΞΞΞΞk+1 from ΞΞΞΞk+ by 
removing ξξξξi*  such that det F(p, ΞΞΞΞk+1) remains as large as possible.  
 
This augmentation of the number of support points, followed by the removal of some of them 
so as to keep the number of observations equal to nt, is called an excursion.  
 
The introduction of several support points before the removal of as many of them may be 
considered (excursion of length ≥ 2). 
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Note: algorithms for exact design can only increase the value of jD(ΞΞΞΞ), but convergence to 
optimal experiment is not guaranteed. 
 
In contrast, the methods presented now yield a global optimum, sometimes at the price of 
approximation to make the designed experiment implementable. 
 

Distribution of experimental effort 

When experiments are repeated, the number ne of distinct ξξξξi’s is less than the total number of 
observations nt. FIM can then be written as 

F(p, ΞΞΞΞ) = ∑
i=1

ne
 
  ri 

1

w(ξξξξi)
  sy(ξξξξi, p)syT(ξξξξi, p) , 

with ri the number of repetitions of measurements under conditions ξξξξi, so ∑
i=1

ne
 
  ri = nt. 
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The FIM per sample is then 
 

Fps(p, ΞΞΞΞ) = ∑
i=1

ne
 
 

ri
nt

 
1

w(ξξξξi)
  sy(ξξξξi, p)syT(ξξξξi, p) , 

with 

UVDW8 , �F + X()X� DW8 , �F. 
 
 
The proportion Z8 + [8/\ 
 
of observations at ξξξξi can be considered as a percentage of experimental effort.  
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Experiment ΞΞΞΞ thus represented as a discrete distribution mD, 
 

mD = 






ξξξξ1  … ξξξξne

µ1  … µne
 , 

 
which is normalized, since 

∑
i=1

ne
 
  µi = 1. 

 
The µi’s are rational numbers (µi = ri/nt, with nt fixed).  
 
Kiefer and Wolfowitz showed that removing this constraint and extending design to any 
normalized measure on  drastically simplifies design.  
 
This is the basis for the algorithms to be presented now. 
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Consider thus a normalized measure m on , satisfying   ⌡
⌠
 m(dξξξξ)  = 1. 

 
FIM per sample then takes the form 
 

Fps(p, m) = 
⌡

⌠ 

1

w(ξξξξ)
 sy(ξξξξ, p)syT(ξξξξ, p)  m(dξξξξ). 

 
Any matrix of this form can be obtained with a discrete measure. We can thus restrict 
attention to discrete experiments, associated with normalized discrete measures on .  
 
A discrete experiment usually cannot be implemented exactly for a given number nt of 
observations, since the weights must satisfy µi = ri/nt.  
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In most cases, the µi’s must thus be approximated by rational numbers ri/nt.  
 
This is why the approach is called approximate design. 
 

Properties of optimal experiments 

 
Kiefer-Wolfowitz equivalence theorem.  
 
For D-optimality, design amounts to the minimization of the convex function – ln det � over 
the convex set of symmetric non-negative definite matrices Fps(p, m).  
 
The matrix Fps(p, ̂ _) associated with a D-optimal design measure ^_ is thus unique.  
 
This does not imply uniqueness of ^_. 
 
The optimum can be characterized by first-order stationarity conditions. 
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Design measure m1 is D-optimal if and only if det Fps(p, m1) is a maximum, or, equivalently, 
if and only if for any measure m2,  

 

∂ ln det Fps[p, (1 – α)m1 + αm2]

∂α |α=0  ≤ 0. 

Since 
∂ ln det F

∂α  = trace (F–1 
∂F

∂α),   

 
a necessary and sufficient condition for D-optimality of m1 is 
 

trace {Fps–1(p, m1) [Fps(p, m2) – Fps(p, m1)]} ≤ 0, for any m2, 
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or equivalently 
trace [Fps–1(p, m1) Fps(p, m2)] ≤ dim  p, for any m2. 

 
In particular, this must be true when m2 is the discrete measure with unit weight at a single 

support point ξξξξ ∈ .  
 
 
A necessary condition for D-optimality of m1 is thus 
 

d(ξξξξ, m1) ≤ dim p, for any ξξξξ ∈ , 
with 

`	W, ^
 + 1a	W
 UV#	W, �
�bc��	�, ^
UV	W, �
. 
 
One can easily check that this necessary condition is also sufficient.  
 
Note that a	W
 need not be known to compute `	W, ^
.  
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Now, using the fact that 

dim p = trace [Fps–1(p, m1) Fps(p, m1)] = ∑
i=1

ne

 µid(ξξξξi, m1) , 

 
where the µi’s and ξξξξi’s are respectively the weights and support points of the D-optimal 
design measure m1, the following theorem is obtained. 
 

EQUIVALENCE THEOREM (Kiefer and Wolfowitz) 

 
The following properties are equivalent: 
 

• the design measure mD is D-optimal,  

• the maximum of d(ξξξξ, mD) for ξξξξ∈  is equal to dim p, 

• mD is the measure m that minimizes the maximum of d(ξξξξ, m) for ξξξξ∈  
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EXAMPLE (continued) 

Consider again 
 
 y(t) = p1*   exp(–p2*  t) + ε(t),  
 
with ε i.i.d. N(0, σ2). The number of observations to be made is no longer specified, and a D-

optimal design measure is sought, with an admissible domain [0, ∞[ for the measurement 
times. It can readily be checked that the design measure 
 

mD = 






0 1/p2

1/2 1/2
   

is D-optimal. Indeed, 
 

d(t, mD) = 2 exp(–2p2t) (1 – 2p2t + p22 t2e2 + p22 t2) . 

 
Since d(0, mD) = d(1/p2, mD) = 2 = dim p, and d(t, mD) ≤ 2 for all t ≥ 0, mD is D-optimal.  
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Algorithms based on equivalence theorem 

Consider a non-degenerate design measure mk. From equivalence theorem, mk is D-optimal if 

and only if d(ξξξξ, mk) ≤ dim p for any ξξξξ ∈ .  
 
Structure of algorithms then as follows. 
 
Step 1: Choose a discrete non-degenerate initial design measure m1 (a normalized discrete 

distribution with at least np support points, such that det Fps(p, m1) ≠ 0). Choose some 
positive tolerance δ << 1. Set k = 1. 

Step 2: Find ξξξξ*  = arg maxξξξξ∈  d(ξξξξ, mk). If d(ξξξξ* , mk) < dim p + δ, stop. 
Step 3: Set mk+1 = (1 – αk)mk + αkmξ* , with mξ*  a measure with unit mass at ξξξξ* , , , , increment k 

by one and go to Step 2. 
 

Step size αk remains to be chosen.  
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Fedorov uses the optimal value dQ� + eDW�,^*F � fg) � fg) � DeDW�,^*F � "F, 
 
while Wynn uses a predefined sequence {αk} that satisfies 
 dQ h 0,       limQij dQ + 0,    ∑ dQ + ∞jQ9" , 
 
for instance dQ + "Ql". 
 

Provided a global maximizer ξξξξ*  is computed at Step 2, both algorithms converge to a D-
optimal measure, a considerable improvement over the algorithms for exact design.  
 
No support point is ever removed from the design measure. Easy to modify the algorithms to 
avoid this drawback. 
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Applications 

 

Optimal measurement times 

When the number of observations is small, measurement times can be individually optimized. 
 
When the number of observations is large, optimization of measurement times will often be 
restricted to determination of optimal sampling frequencies. 
 

Optimal inputs 

For dynamical systems, the result of each observation depends on previous inputs, so the 
experimental conditions ξξξξi for observation i depend on those for others. The search will be for 
the optimal input from a predefined class of admissible inputs, which may be parametric (e.g., 
weighted superposition of inputs with simple shapes) or not. 
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Parametric inputs 

In biology, the admissible inputs are often the superposition of basic signals with given 
shapes. For instance, one may consider the superposition of 

 
• rectangular pulses ai[H(t – ti) – H(t – Ti – ti)], where H is Heaviside’s step function,  
• impulses biδ(t – τi), where δ is Dirac’s distribution,  

• polynomials ∑ `QmnQ9: OQ. 
 
The parameters ΞΞΞΞ that characterize an input u are then respectively 
 

• the starting time ti, amplitude ai and duration Ti of each rectangular pulse, 
• the time τi and area bi of each impulse (bi may correspond to a dose administered), 
• the coefficients dk of the polynomials. 

 
The design problem then amounts to a nonlinear optimization problem with respect to ΞΞΞΞ. 
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EXAMPLE 

Consider the system 
 

d
dt  ym(t, p* ) = –p*ym(t, p* ) + u(t),   ym(0–, p* ) = 0,       y(t) = ym(t, p*) + ε(t), 

 
where p*  is the (scalar) parameter to be estimated, with ε i.i.d. N(0, σ2).  
 
We wish to determine a D-optimal input of unit area (i.e., a unit dose), in the family 

u(t) = (1 – α)δ(t) + 
α
T   [H(t) – H(t – T)],  T > 0, 0 ≤ α ≤ 1. 

 
Only one observation is to be made. We also wish to find the optimal measurement time t, 
with the constraint 0 ≤ t ≤ T. The experiment to be performed is thus characterized by  
 

ΞΞΞΞ = 	d, o, O
#. 
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The response of the model for 0 ≤ t ≤ T is 
 

ym(t, p) = 
α
pT   +  exp(–pt) [1 – α(1 + 

1
pT )]. 

 
The FIM, here a scalar, can be written as 
 

F(p, ΞΞΞΞ) = 
1

σ2
  { exp(–pt)[

α
p2T

  – t + αt(1 + 
1

pT )] – 
α

p2T
 } 2 

 

and the D-optimal experiment is 

ΞΞΞΞD = (0, T, 
1
p )T, 

 
with T arbitrary. The D-optimal input in the family considered is thus the unit impulse.  
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Nonparametric inputs 

 
The restriction to parametric inputs must sometimes be relaxed. Determining an optimal 
parametric input may serve to initialize input design in a larger class. Some constraints on the 
shapes of admissible inputs, easily be taken into account for parametric inputs, may raise 
difficulties for nonparametric inputs. 
 

Simultaneous choice of inputs and sampling times 

When the input is parametric, the components of the vector ΞΞΞΞ that characterizes the 
experiment may consist of the nt sampling times and the parameters defining the input signal. 
 
When the input signal is nonparametric, the construction of an optimal sampling schedule 
becomes difficult. 
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Robust design 

Can we avoid assuming that we know the value of the parameters p that we wish to estimate? 

Sequential design 

Experimentation Estimation

Experiment design

ΞΞΞΞi

y(ΞΞΞΞi)

 p̂

ΞΞΞΞi+1

i ← i + 1
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What one should not do: 
 

Estimate p̂(i)  from observations y(ΞΞΞΞi), for i = 1, … , k, 

Estimate p̂ k as the average of the p̂(i) ’s: 
 

p̂ k = 
1
k ∑

i=1

k
 
 p̂(i) . 

 
Usually, this does not converge to p*  as k tends to infinity.  
 
 
To guarantee convergence of p̂ k to p* , the estimation of p̂ k should make use of all previous 
observations (i.e., y(ΞΞΞΞ1), … , y(ΞΞΞΞk)).  
 
The designed experiment will then tend to the optimal experiment for p* . 
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Repetition of experiments often impossible and a one-shot experiment must be designed.  
 
Even if design is sequential, each design step should make use of all information available.  
 
Non-sequential design approaches that determine a single experiment taking all prior 
uncertainty in p into account are thus useful.  
 
Two types of robust-design procedure will be considered.  
 
They differ in  
 

• how prior information is characterized,  
• the importance attached to the risk of designing an experiment badly suited to some rare 

parameter values.  
  



 

Parameter Estimation in Physiological Models, Euro Summer School, Lipari, September 2009. 
42 

 

Average optimality 

Relies on a probabilistic description of the prior uncertainty in p. 
 
Prior distribution πp(p) may have been inferred from previous observations collected on 
similar processes or individuals in a population. 
 

Criteria 

We only consider cost functions related to D-optimality, but others could be treated similarly.  
 
Using the prior distribution πp(p) makes it possible to remove the dependence on p by 
considering the expectation of the original cost function.  
 

Whereas cost functions –det F(p, ΞΞΞΞ), –ln det F(p, ΞΞΞΞ) and 1/det F(p, ΞΞΞΞ) lead to identical D-
optimal designs, the introduction of expectations makes these approaches different. 
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EID-optimal design minimizes 
 

jEID(ΞΞΞΞ) = E
p

  {1/det F(p, ΞΞΞΞ)}. 

 
ELD-optimal design maximizes 
 

jELD(ΞΞΞΞ) = E
p

  {ln det F(p, ΞΞΞΞ)}. 

 
EID-optimal experiment depends on parametrization, contrary to ELD-optimal experiment.  
 

EXAMPLE (continued) 

Consider again the system: 
y(t) = p1*   exp(–p2*  t) + ε(t), 

 
with ε i.i.d. N(0, σ2). We look for two optimal sampling times, to estimate p1*   and p2*  .  
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For a nominal value p2
0   

ΞΞΞΞD = (0, 1/p2
0 )T. 

 
If πp(p2) uniform over [1, 10],  

ΞΞΞΞEID = (0,   0.139)T. 
 
If πp(p2) N(5.5, 1.52),  

ΞΞΞΞEID = (0,   0.161)T. 
 
For the two densities above,  

ΞΞΞΞELD = (0,   0.182)T. 
 

 
Except in very simple situations, an optimal experiment cannot be found analytically, and 
numerical procedures are required. 
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Algorithms 

Exact design.  
 
Stochastic approximation allows a cost function like 
 

jE(ΞΞΞΞ) = E
p

  { j(p, ΞΞΞΞ)} 

 
to be optimized without having to evaluate expectations.  
 
Simplest version is the stochastic gradient algorithm 
 

ΞΞΞΞk+1 = ΞΞΞΞk – λk 
∂j(pk, ΞΞΞΞ)

∂ΞΞΞΞ
 | ΞΞΞΞ = ΞΞΞΞk. 

 
At each iteration k, a value pk is randomly generated according to πp(p).  
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The sequence of scalar steps λk must satisfy 
 pQ h 0,      ∑ pQ + ∞jQ9" ,   ∑ p$Q q ∞jQ9" , 

 

and the most popular choice is the harmonic sequence 
 

λk = 
α

k + 1 ,   α > 0. 

 
 
Speed of convergence is very sensitive to the choice of the scalar α in the sequence λk.  
 
Componentwise normalization of the gradient allows easier choice of a suitable value for α.  
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The algorithm thus modified becomes 
 

ΞΞΞΞk+1 = ΞΞΞΞk – λk ΛΛΛΛk 
∂j(pk, ΞΞΞΞ)

∂ΞΞΞΞ
 | ΞΞΞΞ = ΞΞΞΞk, 

 

where ΛΛΛΛk is a diagonal matrix, the ith diagonal entry of which is 
 

Λkii = 
Ξimax – Ξimin

[1k ∑
n=1

k
 
 (
∂j(pn, ΞΞΞΞ)

∂Ξi
|ΞΞΞΞ = ΞΞΞΞn)2]1/2

 , 

 

where Ξimax and Ξimin are upper and lower bounds on the possible values of Ξi.  
  



 

Parameter Estimation in Physiological Models, Euro Summer School, Lipari, September 2009. 
48 

 

If λk = α/(k + 1), this implies 
 

Ξ1i   – Ξ0i   = ± α(Ξimax – Ξimin). 

 
The scalar α is then the relative length of the first step. A typical choice is α = 0.1.  
 
Note that convergence to a global optimum is not guaranteed. 
 
 
Approximate design  
 
The equivalence theorem can extended to average-optimal design.  
 
Global convergence can be guaranteed, but calculations will be extremely heavy unless the 
prior distribution for p is discrete. 
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Maximin optimality 

Sometimes, the best experiment in the worst circumstances should be preferred to the best 
one on average.  
 
This depends on the importance attached to (unlikely) parameter values whose estimation 
with an average-optimal experiment might be very inaccurate.  
 
Maximin optimal design requires the definition of a set of prior admissible values for p. 
 
Using makes it possible to remove the dependence on p by considering the worst possible 
value of the original cost function.  
 
We consider a criterion based on D-optimality, but this is applicable to others.  
 
MMD-optimal design maximizes 

 
jMMD(ΞΞΞΞ) = min�� det �	�,    Ξ
. 
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EXAMPLE (continued) 

Consider again 
y(t) = p1*   exp(–p2*  t) + ε(t), 

 
where ε is i.i.d. N(0, σ2). We search for two sampling times to estimate the parameters p1*   
and p2*  , when the prior admissible values for p2 belong to 
 

2 = [p2min, p2max]. 
 
The MMD-optimal experiment then coincides with the D-optimal experiment for p2 = p2max: 
 

ΞΞΞΞMMD  = (0,   
1

p2max
 )T. 

 
The maximin-optimal experiment sometimes coincides with a D-optimal experiment for a 
particular value of the model parameters that can be determined a priori. This greatly 
facilitates computation.  
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When the maximin-optimal experiment cannot be found analytically and does not coincide 
with a particular D-optimal experiment, specific optimization algorithms must be used. 
 

Algorithms 

The goal is to find ΞΞΞΞMMD  (in ) that maximizes 
 

 jMMD(ΞΞΞΞ) = min�� det �	�,    Ξ
. 
 
What one should not do: alternate maximization with respect to � and minimization with 
respect to p of det �	�,    Ξ
. This may cycle forever. 
 
The most straightforward approach uses brute force and maximizes jMMD  by a general-
purpose nonlinear-programming algorithm, each evaluation of jMMD(ΞΞΞΞ) being the result of a 
minimization with respect to p using a second nonlinear programming algorithm.  
 
May require a huge amount of computation.  
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Relaxation algorithm (for exact design).  
 
Problem redefined as finding ΞΞΞΞMMD  in  that maximizes the scalar α under the constraints 
 

jMMD(ΞΞΞΞ)  ≥ α, ∀ p ∈ . 
 
This has an infinite number of constraints. Relaxation introduces a finite number of them: 
 
Step 1: Choose initial value p1 in , and define a first set of representative values 1 = {p1}. 

Set k = 1. 
Step 2: Find     ΞΞΞΞk + arg max��  min�� Q det �	�,    Ξ
 

Step 3: Find     pk+1 =arg  min�� det �	�,    ΞQ
. 

Step 4: If j(pk+1, ΞΞΞΞk) ≥ min�� Q det �	�,    ΞQ
 – δ, where δ is some positive tolerance, accept 
ΞΞΞΞk as an approximate solution. Else include pk+1 in k, increment k by one and go to Step 2. 
 
Stops after a finite number of steps. A global optimization algorithm is recommended. 
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Conclusions 
 
Experiments are always constrained, and the constraints must be taken into account. 
 
Evaluation of the FIM is simple enough to allow constrained optimization. 
 
Knowledge-based models are most often not LP, so their FIM depends on the value of the 
parameters to be estimated, which is a very serious difficulty. 
 
Whereas local design assumes a known prior nominal value for p, the methods presented 
allow uncertainty in this nominal value to be taken into account.  
 
The dependence of the optimal experiment on any other quantity (e.g., a nuisance parameter) 
with an unreliable prior value could be treated in the same way. 
 
The first three units have assumed that M(·) could be made identifiable (at least locally). 
 
Unit 4 will show how the concept of identifiability can be bypassed. 
 


