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1 - PRELIMINARIES

1.1 - EXISTENCE AND UNIQUENESS OF SOLUTIONS

Existence and uniqueness of solutions are clearly the basic properties an Ordinary Di®erential Equations
(ODE) model is required to satisfy in order to properly represent the physical system it aims to model. Before
getting into the details, let us recall some mathematical de¯nitions.

De¯nition 1.1.1 A function f : IRn 7! IRm is:
i) locally Lipschitz on the open set D µ IRn if for any x0 2 D there exists a neighborhood I½(x0) ½ D
such that, for some positive constant L0:

kf(x1)¡ f(x2)k · L0kx1 ¡ x2k; 8x1; x2 2 I½(x0); (1:1:1)

ii) Lipschitz on the open set D µ IRn if there exists a positive constant L:

kf(x1)¡ f(x2)k · Lkx1 ¡ x2k; 8x1; x2 2 D: (1:1:2)

iii) globally Lipschitz if it is Lipschitz on D ´ IRn.

Remark 1.1.2. Not all the locally Lipschitz functions are Lipschitz on the same domain D, since to
this aim the Lipschitz condition needs to hold uniformly on D. However, it can be proven that a locally
Lipschitz function on D µ IRn is Lipschitz on every compact subset of D. ²

Remark 1.1.3. Consider the Lipschitz condition for scalar functions f : IR7! IR, which can be written
as:

jf(x1)¡ f(x2)j
jx1 ¡ x2j

· L: (1:1:3)

It means that:
i) if a function has a discontinuity in a given point x0 (e.g. of the type: f(x¡0 ) 6= f(x+0 )), it cannot be

locally Lipschitz on a domain which includes x0;
ii) if a continuous function has an in¯nite slope in a given point x0 (e.g. f(x) = x1=3 for x0 = 0), it cannot

be locally Lipschitz on a domain which includes x0;
iii) if a continuous function has a bounded derivative on a domain D (that means: jf 0(x)j · k for any

x 2 D), then it is Lipschitz on the domain. ²
This last consideration can be properly extended to the general vectorial case.
Lemma 1.1.4. Let f : IRn 7! IRm be continuous on the open set D µ IRn and have continuous derivative

df=dx on the same domain D. Then f(¢) is locally Lipschitz on D. Moreover, if df=dx is uniformly bounded
on a convex subset: °°°°

df

dx
(x)

°°°° · k; 8x 2W µ D; (1:1:4)

then f(¢) is Lipschitz on W with Lipschitz constant L = k.
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We are now in position to properly state the \existence and uniqueness problem" for an ODE model.
Consider the time-invariant, nonlinear system:

_x(t) = f
¡
x(t)

¢
; x(t0) = x0; x(t) 2 IRn; f : IRn 7! IRn: (1:1:5)

Since the system is time-invariant, the time evolution x(t) corresponding to the unique solution (if any)
of the Cauchy problem formalized by (1.1.5) depends only of the time di®erence t ¡ t0 instead of the two
distinct time instants t0 and t. For this reason, in the following, the initial time instant t0 will be set equal
to 0, with no loss of generality and the evolution x(t) will be associated to a function ' : IR+ £ IRn 7! IRn

such that:
x(t) = '(t; x0) (1:1:6)

is the unique solution (if any) of the Cauchy problem (1.1.5) with t0 = 0. ' is the state-transition map.
In order to be meaningful, the state-transition map is required to verify the properties of consistency and
semigroup. The consistency property claims that:

'(0; x) = x; 8x 2 IRn: (1:1:7)

Indeed, when t7! 0+ the time evolution x(t) needs to converge to the initial state x0. As far as the semigroup
property, it claims that:

'
¡
t¡ t1; '(t1; x0)

¢
= '(t; x0); 8x0 2 IRn; 0 · t1 · t: (1:1:8)

Note that '(t; x0) is the time evolution starting from the initial time t0 = 0 and initial state x0, whilst
'
¡
t¡ t1; '(t1; x0)

¢
is the time evolution starting from the initial time t1 > 0 and initial state x1 = '(t1; x0)

reached by the system when starting from the initial time t0 = 0 and initial state x0. The semigroup property
claims both the state to be equal.

Theorem 1.1.5. (Local Existence and Uniqueness) Consider the time-invariant, nonlinear system
de¯ned in (1:1:5) with t0 = 0. If f(¢) is Lipschitz on a neighborhood I½(x0) of the initial state, then there
exists a ¢t > 0 such that a unique solution x(t) = '(t; x0) exists for t 2 [0;¢t].

Example 1.1.6. Consider the case: f(x) = x1=3, x0 = 0. As stated in Remark 1.1.3, f(¢) is not
Lipschitz in the neighborhood of x0 = 0. Indeed, it does not admit a unique solution since:

x(t) ´ 0 and x(t) =

µ
2t

3

¶3=2
(1:1:9)

are both solutions of the problem. ²
Remark 1.1.7. The local Lipschitz condition is not restrictive. Nevertheless, it does not allow to say

how far the solution x(t) may be extended on the time interval. In other words, it does not tell about the
length of ¢t. ²

Example 1.1.8. Consider the case: f(x) = x2 with a generic initial condition x(0) = x0. It clearly
comes that f(¢) is locally Lipschitz on IRn. Indeed, the unique solution is:

x(t) =
x0

1¡ tx0
; t 2 [0;¢t]; for some ¢t > 0: (1:1:10)

However:
i) if x0 · 0, the solution can be extended up to in¯nity (i.e. for t 2 [0;+1));
ii) if x0 > 0, the solution can be extended up to a ¯nite escape time (i.e. for t 2 [0; 1=x0)). ²
Theorem 1.1.9 (Global Existence and Uniqueness). Consider the time-invariant, nonlinear

system de¯ned in (1:1:5) with t0 = 0. If f(¢) is globally Lipschitz, then there exists a unique solution
x(t) = '(t; x0) on a time interval t 2 [0; T ], for any T > 0.
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Example 1.1.10. It has to be stressed that Theorem 1.1.9 provides a su±cient condition, which is
somewhat rare to obtain. For instance, the cases f(x) = x2 of Example 1.1.8 does not ful¯ll it. It means
that its solution may not be inde¯nitely extended (and this happens, for instance, for x0 > 0), but does not
prevent it at all (as it happens for x0 · 0). ²

Example 1.1.11. Linear functions f(x) = Ax are globally Lipschitz, therefore time-invariant, linear
systems of the type:

_x(t) = Ax(t); x(0) = x0; x(t) 2 IRn; A 2 IRn£n (1:1:11)

always admit a unique solution on [0; T ] for any T > 0 (and prevent ¯nite escape times). ²

1.2 - CONTINUOUS DEPENDENCE ON INITIAL CONDITION AND PARAMETERS

If existence and uniqueness is a \conditio sine qua non" a mathematical model can be usefully considered
to represent the underlying physics, continuous dependence on the initial condition and on the function f(¢)
are of primary importance with respect to all other properties, since we want small variations for the evolution
x(t) according to small perturbations of the initial conditions or of the model parameters. To this aim the
following de¯nitions are required.

De¯nition 1.2.1. Consider the time-invariant, nonlinear system de¯ned in (1:1:5) with t0 = 0. Assume
it admits a unique solution x(t) = '(t; x0) de¯ned on t 2 [0; T ]. This solution depends continuously on the
initial state x0 if:

8" > 0; 9± > 0 : 8~x0 2 I±(x0) )
(

_x(t) = f
¡
x(t)

¢
; x(0) = ~x0 admits a unique solution on [0; T ];

k'(t; x0)¡ '(t; ~x0)k < "; 8t 2 [0; T ]:

(1:2:1)

Remark 1.2.2. According to De¯nition 1.2.1, continuous dependence on the initial state means that,
no matter how close (i.e. how small is ") to the original evolution '(t; x0) we claim the perturbed evolution
'(t; ~x0) be, we can always choose a perturbation of the initial state close enough to the original initial state
x0 such that there exists a unique solution of the perturbed system which satis¯es the constraint of closeness
to the original solution. ²

As far as the continuous dependence on f(¢), the problem will be reduced to the continuous dependence
on a parameter vector µ characterizing f(¢).

De¯nition 1.2.3. Consider the time-invariant, nonlinear system:

_x(t) = f
¡
x(t); µ

¢
; x(0) = x0; x(t) 2 IRn; µ 2 £ µ IRp; f : IRn £ IRp 7! IRn: (1:2:2)

Assume it admits a unique solution x(t) = '(t; x0; µ) de¯ned on t 2 [0; T ]. This solution depends continuously
on the parameter vector µ if:

8" > 0; 9± > 0 : 8~µ 2 I±(µ) )
(

_x(t) = f
¡
x(t); ~µ

¢
; x(0) = x0 admits a unique solution on [0; T ];

k'(t; x0; µ)¡ '(t; x0; ~µ)k < "; 8t 2 [0; T ]:
(1:2:3)

Remark 1.2.4. Like in Remark 1.2.2, according to De¯nition 1.2.3, continuous dependence on the
parameter vector means that, no matter how close (i.e. how small is ") to the original evolution '(t; x0; µ)
we claim the perturbed evolution '(t; x0; ~µ) be, we can always choose a perturbation of the vector parameter
close enough to the original value µ such that there exists a unique solution of the perturbed system which
satis¯es the constraint of closeness to the original solution. ²
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De¯nitions 1.2.1 and 1.2.3 are both taken into account in the following Theorem stating the hypotheses
according to which system (1.2.2) ensures continuous dependence on both the initial condition and the
parameter vector.

Theorem 1.2.5 (Continuous Dependence on Initial Condition and Parameters). Consider
the time-invariant, nonlinear system de¯ned in (1:2:2). Let f(¢; ¢) be continuous with respect to µ on a given
neighborhood I½(µ) and Lipschitz with respect to x on an open set D µ IRn containing the initial condition
x0. Suppose x(t) = '(t; x0; µ), t 2 [0; T ] is the unique solution of (1:2:2) and belongs to D for all t 2 [0; T ].
Then:

8" > 0; 9± > 0 :

(
8~x0 2 I±(x0)

8~µ 2 I±(µ)
)

(
_x(t) = f

¡
x(t); µ

¢
; x(0) = ~x0 admits a unique solution on [0; T ];

k'(t; x0; µ)¡ '(t; ~x0; ~µ)k < "; 8t 2 [0; T ]:

(1:2:4)

Remark 1.2.6 As previously stated in Example 1.1.11, linear functions are globally Lipschitz, that
means solutions of linear systems continuously depend on the initial state. ²

2 - EQUILIBRIUM POINTS AND STABILITY

2.1 - EQUILIBRIUM POINTS

Assuming an ODE model admits a unique solution compatible with the initial state, the explicit solu-
tion could be very hard to compute and, often, may not exist in an analytical closed form, unless particular
cases such as linear models. The qualitative analysis of solutions of an ODE model (which dates back to the
pioneering works of Poincar¶e around 1880) gives useful insights on the real behavior of the solution, with-
out involving a quantitative analysis based on the analytical/numerical methodologies required to compute
explicitely the solution.

De¯nition 2.1.1. Consider the time-invariant, nonlinear system:

_x(t) = f
¡
x(t)

¢
; x(0) = x0; x(t) 2 IRn; f : IRn 7! IRn; (2:1:1)

with x(t) = '(t; x0) the unique solution associated to (2:1:1). xe 2 IRn is an equilibrium point if:

'(t; xe) = xe; 8t ¸ 0: (2:1:2)

Remark 2.1.2. According to De¯nition 2.1.1, it comes that if the initial state is an equilibrium point,
then there is no motion, that means the trajectory reduces trivially to the equilibrium point. Therefore a
way to ¯nd the equilibrium points is to solve the algebraic nonlinear system: f(x) = 0, since the solutions
make the time derivative vanish. As a matter of fact, it comes that:

{ there could be no equilibrium points at all (f(x) = 0 has no solutions);
{ there could be a unique equilibrium point (f(x) = 0 admits a unique solution);
{ there could be a ¯nite number of isolated equilibrium points (f(x) = 0 admits a ¯nite number of

solutions);
{ there could be an in¯nite number (countable or uncountable) of equilibrium points (f(x) = 0 admits

in¯nite solutions). ²
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Remark 2.1.3. In case of linear systems _x(t) = Ax(t), the equilibrium points are the solutions of
Ax = 0, therefore they consist of the null-space of matrix A. It means:

{ the origin is always an equilibrium point;
{ if rank(A) = n, the origin is the unique equilibrium point;
{ if rank(A) = r < n, there exist 1n¡r (uncountable) equilibrium points;
{ there can never be a ¯nite (neither a countable) number of isolated equilibrium points.

2.2 - STABILITY

Stability theory allows to understand what happens in case of perturbations. In this framework we
will consider perturbations of the equilibrium points: how close to the equilibrium point the motion is kept
according to a perturbation of the initial state from the equilibrium.

De¯nition 2.2.1. Consider the time-invariant nonlinear system de¯ned in (2:1:1). The equilibrium
point xe is stable if:

8" > 0; 9± > 0 : kx0 ¡ xek < ± =) kx(t)¡ xek < "; 8t ¸ 0: (2:2:1)

Remark 2.2.2. The stability de¯nition is related to the capability of maintaining arbitrarily bounded
the state evolution according to an initial state perturbation occurring in a suitably chosen neighborhood of
the equilibrium state. In Fig. 2.2.1 a graphical interpretation for a second-order system is provided where
Euclidean norms are considered, so that neighborhoods are circles. Then, De¯nition 2.2.1 can be stated as
follows: whatever arbitrarily small is chosen the radius " of a neighborhood of the equilibrium point xe, it
must be possible to ¯nd a smaller radius ± such that, whatever is chosen the initial state x0 inside the inner
neighborhood I±(xe), the time evolution x(t) is kept constrained within the outer neighborhood I"(xe). ²

Fig. 2.2.1 - De¯nition of stability: graphical interpretation for second-order systems.

Lemma 2.2.3. Consider a linear ODE model. In case of many in¯nite equilibrium points, the stability
of a given equilibrium point implies and is implied by the stability of the origin.

Proof. Let _x(t) = Ax(t) be the linear system under investigation, and let xe 6= 0 a nontrivial equilibrium
point (i.e. Axe = 0). If xe is stable, then condition (2.2.1) holds true. Now consider the displacement
z(t) = x(t)¡ xe, whose dynamics is described by:

_z(t) = _x(t) = Ax(t) = Ax(t)¡Axe = Az(t): (2:2:2)

That is: z(t) is described by the same linear ODE model of x(t). Thus, the stability condition for the origin
written in the z-coordinates:

8" > 0; 9± > 0 : kz0k < ± =) kz(t)k < "; 8t ¸ 0 (2:2:3)

is the same of (2.2.1), referred to the stability of xe: if (2.2.1) holds true, also (2.2.3) holds true and conversely.
}
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Remark 2.2.4. According to Lemma 2.2.3, we will talk about the stability of a linear system rather
than the stability of the origin of a linear system. ²

De¯nition 2.2.5. Consider the time-invariant nonlinear system de¯ned in (2:1:1). The equilibrium
point xe is

{ locally attractive if:

9´ > 0 : kx0 ¡ xek < ´ =) kx(t)¡ xek 7! 0: (2:2:4)

{ globally attractive if:

8x0 2 IRn; it is : kx(t)¡ xek 7! 0: (2:2:5)

Remark 2.2.6. By de¯nition, attractivity can occur only if the equilibrium point xe is isolated since,
otherwise, whatever small ± is chosen, there will always be many in¯nite equilibrium points in I½(xe): if one
of them is chosen as initial state, there will be no motion and, therefore, no convergence to xe. ²

It has to be stressed that an equilibrium point can be attractive without necessarily being stable. The
following example allows to better understand the statement.

Example 2.2.7. Consider the ODE model:

8
>>>>>><

>>>>>>:

_x1 =
x21(x2 ¡ x1) + x52

(x21 + x22)
¡
1 + (x21 + x22)

¢ ;

_x2 =
x22(x2 ¡ 2x1)

(x21 + x22)
¡
1 + (x21 + x22)

¢ :

(2:2:6)

It can be proven that the origin is an equilibrium point, which is attractive but not stable. Indeed, wherever
starting in the second quadrant of the plane (even when starting very close to the equilibrium point), the
evolution approaches a curve which lies on a ¯nite distance from the origin before it converges to it (see
Fig. 2.2.2). We cannot constrain the evolution on a neighborhood which does not contain such a curve, that
means: no stability! ²

Fig. 2.2.2 - Trajectories referred to system (2.2.6).

De¯nition 2.2.8. Consider the time-invariant nonlinear system de¯ned in (2:1:1). The equilibrium
point xe is locally/globally asymptotically stable if it is stable and locally/globally attractive.
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De¯nition 2.2.9. Consider the time-invariant nonlinear system de¯ned in (2:1:1). The equilibrium
point xe is exponentially stable if:

9® > 0 : 8" > 0; 9± > 0 : kx0 ¡ xek < ± =) kx(t)¡ xek < " ¢ e¡®t: (2:2:7)

Remark 2.2.10. Note that exponential stability implies local asymptotic stability since, according to
(2.2.7), it is:

kx(t)¡ xek < " ¢ e¡®t < " and kx(t)¡ xek < " ¢ e¡®t 7! 0: (2:2:8)

Moreover, the exponential stability ensures a \faster-than-exponential" convergence to zero of the displace-
ment x(t)¡ xe. ²

Lemma 2.2.11. Consider a linear ODE model _x(t) = Ax(t). Then only the origin can be asymptotically
stable, if it is the only equilibrium point.

Proof. The proof follows from the consideration that the set of the equilibrium points of a linear system
can either reduce to the only origin (if rank(A) = n) or be constituted of a subspace of the state space (if
rank(A) < n), see Remark 2.1.3. For instance, if we consider a second-order system with rank(A) = 1 <
n = 2, the equilibrium points constitute a right line passing through the origin. Thus, the Lemma is proven
according to Remark 2.2.6. }

3 - LINEAR SYSTEMS

3.1 - SPECTRAL DECOMPOSITION OF A SQUARE MATRIX

Linear ODE models allow to analytically compute in a closed form the explicit solution of a Cauchy
problem. Let us consider a linear ODE model of the type:

_x(t) = Ax(t); x(0) = x0 x(t) 2 IRn; A 2 IRn£n; (3:1:1)

and assume that matrix A has n distinct eigenvalues f¸1; : : : ; ¸ng, to which the following eigenvectors are
associated: fu1; : : : ; ung such that:

Aui = ¸iui: (3:1:2)

These eigenvectors constitute a base for the state space, that means the following matrix:

U = [u1 ¢ ¢ ¢ un] (3:1:3)

is nonsingular. Thus, it is easy to verify that:

AU = A[u1 ¢ ¢ ¢ un] = [Au1 ¢ ¢ ¢ Aun] = [¸1u1 ¢ ¢ ¢ ¸nun] = [u1 ¢ ¢ ¢ un]

2

4
¸1 O

. . .

O ¸n

3

5 = U¤; (3:1:4)

where ¤ is the diagonal matrix in IRn£n having the n eigenvalues on its main diagonal. From eq.(3.1.4) it
follows that A and ¤ are similar matrices, that means there exists a coordinate transformation matrix U such
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that in the new coordinates z(t) = U¡1x(t), matrix ¤ plays the same role of matrix A for the x-dynamics.
Indeed, by writing the z-dynamics:

_z(t) = U¡1 _x(t) = U¡1Ax(t) = U¡1AUz(t) = ¤z(t): (3:1:5)

Moreover, the rows of V = U¡1 are left-eigenvectors of matrix A, since:

U¡1A = V A =

2

6
4

vT
1
...
vT

n

3

7
5A =

2

6
4

vT
1 A
...

vT
nA

3

7
5 and ¤U¡1 = ¤V =

2

4
¸1 O

. . .

O ¸n

3

5

2

6
4

vT
1
...
vT

n

3

7
5 =

2

6
4

¸1v
T
1

...
¸nv

T
n

3

7
5 :

(3:1:6)
In summary, matrix A can be written as:

A = U¤V = [u1 ¢ ¢ ¢ un]

2

4
¸1 O

. . .

O ¸n

3

5

2

6
4

vT
1
...
vT

n

3

7
5 =

nX

i=1

¸iuiv
T
i (3:1:7)

and this decomposition is known as spectral decomposition of matrix A with all distinct eigenvalues.

Remark 3.1.1. Note that left-eigenvectors are orthogonal to (right)-eigenvectors when associate to
di®erent eigenvalues, that is:

vT
i uj = 0; i6= j: (3:1:8)

Moreover, in case matrix A is symmetric (A = AT ), it is:

Aui = ¸iui =) uT
i A

T = uT
i A = ¸iu

T
i ; (3:1:9)

that means: left-eigenvectors are (right)-eigenvectors transposed. ²
In case of multiple eigenvalues, a base of generalized eigenvectors can be written such that:

A = UJU¡1; (3:1:10)

where J has the eigenvalues on the main diagonal, 1 or 0 on the superdiagonal, and zeros elsewhere.

De¯nition 3.1.2. Given a square matrix A 2 IRn£n, the exponential matrix eA is de¯ned as follows:

eA = I + A +
A2

2
+ ¢ ¢ ¢ =

1X

k=0

Ak

k!
: (3:1:11)

Remark 3.1.3. Note that De¯nition 3.1.2 is well posed, since:

°°eA
°° ·

1X

k=0

kAkk

k!
= ekAk: (3:1:12)

It as to be stressed that the left-hand side of inequality (3.1.12) is the norm of a matrix (the exponential
matrix), while the right-hand side is the exponential of a scalar (the norm of a matrix). ²

In order to compute the exponential matrix, let us ¯rst compute the generic power of a matrix A, by
suitably exploiting the spectral decomposition.

Lemma 3.1.4. The k-th power (k ¸ 0) of a matrix A 2 IRn£n is given by:

Ak = U¤kU¡1 (n distinct eigenvalues); Ak = UJkU¡1 (multiple eigenvalues); (3:1:13)
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where U is the eigenvectors matrix de¯ned in (3:1:3), ¤ is the eigenvalues matrix de¯ned in (3:1:4) and J is
the counterpart of ¤ in case of multiple eigenvalues.

Proof. The Lemma is proven by induction. Assume n distinct eigenvalues. The ¯rst identity in (3.1.13)
is readily veri¯ed for k = 0, since:

A0 = In; and U¤0U¡1 = UU¡1 = In: (3:1:14)

Now assume Ak = U¤kU¡1 is true for an integer k ¸ 0. Then, by using the spectral decomposition:

Ak+1 = A ¢ U¤kU¡1 = U¤U¡1 ¢ U¤kU¡1 = U¤ ¢ ¤kU¡1 = U¤k+1U¡1: (3:1:15)

The case of multiple eigenvalues is straightforward. }
Lemma 3.1.4 allows a closed-form computation for the exponential of matrix A.
Lemma 3.1.5. In case of n distinct eigenvalues, the exponential of a matrix A 2 IRn£n is given by:

eA =

nX

i=1

e¸iuiv
T
i ; (3:1:16)

where ¸i, ui, v
T
i , i = 1; : : : ; n are the eigenvalues, the (right)-eigenvectors and the left-eigenvectors of the

matrix.
Proof. According to the spectral decomposition, by using De¯nition 3.1.2 and Lemma 3.1.4, it comes:

eA =

1X

k=0

Ak

k!
=

1X

k=0

U¤kU¡1

k!
= U

Ã 1X

k=0

¤k

k!

!

U¡1 = Ue¤U¡1: (3:1:17)

In fact, the exponential of matrix A is similar to the exponential of its diagonal form ¤, which is diagonal
itself, since:

e¤ =

2

4
e¸1 O

. . .

O e¸n

3

5 (3:1:18)

which fact completes the proof. }
Remark 3.1.6. In case of multiple eigenvalues eq.(3.1.17) is modi¯ed as:

eA = UeJU¡1: (3:1:19)

Unfortunately, eq.(3.1.19) cannot be easily transformed into the generalized version of eq.(3.1.16), since the
exponential matrix eJ is not diagonal. ²

3.2 - EXPLICIT SOLUTIONS AND NATURAL MODES OF LINEAR SYSTEMS

The solution of a Cauchy problem, stated for a linear ODE model as de¯ned in (3.1.1), is a linear
transformation of the initial state x0:

x(t) = '(t; x0) = ©(t)x0; ©(t) 2 IRn£n; (3:2:1)

with matrix ©(¢) known as the state-transition matrix.

Lemma 3.2.1. Consider the linear system de¯ned in (3:1:1). The related state-transition matrix ©(¢)
satis¯es the following properties:
i) ©(0) = In;

ii) ©(t1 + t2) = ©(t1)©(t2); 8t1; t2 ¸ 0.
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Proof. Item i) is readily proven by suitably exploiting the consistency of the state-transition map:

x = '(0; x) = ©(0)x; 8x 2 IRn: (3:2:2)

The arbitrariness of x necessarily ¯xes ©(0) = In.
Item ii) is proven by exploiting the semigroup property, since:

'(t1 + t2; x0) = '
¡
t1; '(t2; x0)

¢
; 8t1; t2 ¸ 0; 8x0 2 IRn: (3:2:3)

According to the linearity of the system:

'(t1 + t2; x0) = ©(t1 + t2)x0; '
¡
t1; '(t2; x0)

¢
= ©(t1)'(t2; x0) = ©(t1)©(t2)x0: (3:2:4)

The arbitrariness of the initial state x0 completes the proof of item ii). }

Theorem 3.2.2. Consider the linear system de¯ned in (3:1:1). The related state-transition matrix ©(¢)
obeys the following matricial ODE system:

d©

dt
= A©(t); ©(0) = In: (3:2:5)

Proof. The initial condition trivially comes from the consistency property of Lemma 3.2.1. Moreover, by
applying the time-derivative to the explicit solution x(t) = ©(t)x0, it is:

_x(t) =
d

dt

£
©(t)x0

¤
=

d©

dt
x0 and; by de¯nition _x(t) = Ax(t) = A©(t)x0: (3:2:6)

The arbitrariness of x0 completes the proof. }
Remark 3.2.3. It has to be stressed that, when computed for t = 0, eq.(3.2.5) states that _©(0) = A.

Moreover by applying the semigroup property to the time-derivative of the state transition matrix:

d©

dt
= lim

¢t7!0+

©(t + ¢t)¡ ©(t)

¢t
= lim

¢t7!0+

©(¢t)©(t)¡ ©(t)

¢t
=

Ã

lim
¢t7!0+

¡
©(¢t)¡ In

¢

¢t

!

©(t) = A©(t)

= lim
¢t7!0+

©(t)©(¢t)¡ ©(t)

¢t
= ©(t)

Ã

lim
¢t7!0+

¡
©(¢t)¡ In

¢

¢t

!

= ©(t)A;

(3:2:7)
that means: A©(t) = ©(t)A. ²

Theorem 3.2.4 Consider the linear system de¯ned in (3:1:1). The related state-transition matrix ©(¢)
is the exponential matrix function:

©(t) = eAt: (3:2:8)

Proof. The proof is achieved by showing that eAt is the solution to the matricial ODE system (3.2.5).
Indeed, by de¯nition:

eAt
¯̄
¯
t=0

=

·
In + At +

A2t2

2
+ ¢ ¢ ¢

¸

t=0

= In; (3:2:9)

and:

d

dt

£
eAt
¤

=
d

dt

" 1X

k=0

Aktk

k!

#

=

1X

k=1

Aktk¡1

(k ¡ 1)!
= A

1X

k=1

Ak¡1tk¡1

(k ¡ 1)!
= A

1X

h=0

Ahth

h!
= AeAt: (3:2:10)

}
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The spectral decomposition of matrix A allows to write the explicit solution x(t) = eAtx0 as follows.
Assume at ¯rst to have n distinct eigenvalues. Since the eigenvectors constitute a base for the state space,
the initial state itself can be written as:

x0 = c1u1 + ¢ ¢ ¢+ cnun = U

2

4
c1
...
cn

3

5 =

nX

i=1

ciui; (3:2:13)

with the vector ® = [c1 : : : cn]T providing the coordinates of x0 with respect to fu1; : : : ; ung. Then, from
(3.1.17):

x(t) = Ue¤tU¡1U® = Ue¤t® =

nX

i=1

e¸itciui: (3:2:14)

The terms in the sum are known as natural modes of the system, and they contribute to the whole evolution
only if the initial state excites them: x0 needs to have a nontrivial i-th coordinate ci 6= 0 in order to let the
i-th mode e¸itciui be present in the time evolution. According to Remark 3.1.1, the i-th coordinate ci is
nontrivial if and only if the left-eigenvector vT

i is not orthogonal to the initial state, that is:

vT
i x0 6= 0: (3:2:15)

If condition (3.2.15) holds true, we say that the initial state excites the i-th natural mode of the system.

According to the feature of the corresponding eigenvalue, a natural mode can be:
i) aperiodic, if ¸ is a real scalar: the time evolution is that of an exponential, e¸tcu. In case of a negative

eigenvalue we have an asymptotically stable aperiodic mode: the trajectory starts at a point of the
rightline r containing vector u and converges to the origin with an in¯nite time along r, with no
oscillations, in an exponential decreasing fashion, with rate j¸j (see case A of Fig.3.2.1); in case of a
positive eigenvalue we have an unstable aperiodic mode: the trajectory starts at a point of the rightline
r containing vector u and escapes from the origin to in¯nity with an in¯nite time along r, with no
oscillations, in an exponential increasing fashion, with rate ¸ (see case B of Fig.3.2.1); in case of ¸ = 0
we have a stable aperiodic mode: the trajectory is trivially the point of the initial state, which belongs
to the rightline r containing vector u; there is no motion (see case C of Fig.3.2.1);

Fig.3.2.1 - Aperiodic natural modes

ii) periodic, if ¸ is a pure imaginary scalar, that is ¸ = j!. In this case it is useful to consider together the
pair of complex conjugate modes (recall that matrix A has all real entries), so that:

ej!tciui + e¡j!tc?i u
?
i = ½

³¡
ej(!t+µ) + e¡j(!t+µ)

¢
ua + j

¡
ej(!t+µ) ¡ e¡j(!t+µ)

¢
ub

´

= 2½
³

cos(!t + µ)ua ¡ sin(!t + µ)ub

´
;

(3:2:16)

with c1=2 = ½e§jµ and u1=2 = ua § jub. The time evolution is a periodic closed orbit on the subspace
spanfua; ubg, with period T = 2¼=! (see Fig.3.2.2). The amplitude depends on the initial state, since
½ is the absolute value of the coordinate c;

11



Fig.3.2.2 - Stable periodic natural mode

iii) pseudoperiodic, if ¸ is a generic complex eigenvalue, that is ¸ = ® + j!, ® 6= 0. Also in this case it is
useful to consider together the pair of complex conjugate modes, so that:

e(®+j!)tciui + e(®¡j!)tc?i u
?
i = ½e®t

³¡
ej(!t+µ) + e¡j(!t+µ)

¢
ua + j

¡
ej(!t+µ) ¡ e¡j(!t+µ)

¢
ub

´

= 2½e®t
³

cos(!t + µ)ua ¡ sin(!t + µ)ub

´
:

(3:2:17)

with c1=2 = ½e§jµ and u1=2 = ua § jub. In case of negative real part (® < 0) we have an asymptotically
stable pseudoperiodic mode: the trajectory is a spiral which belongs to the subspace spanfua; ubg,
converging to the origin with an in¯nite time and exponential rate j®j (see case A of Fig.3.2.3); in case
of positive real part (® > 0) we have an unstable pseudoperiodic mode: the trajectory is a spiral which
belongs to the subspace spanfua; ubg, escaping from the origin to in¯nity with an in¯nite time and
exponential rate ® (see case B of Fig.3.2.3).

Fig.3.2.3 - Pseudoperiodic natural modes

In case of multiple eigenvalues, the time evolution (3.2.14) becomes:

x(t) = UeJtU¡1U® = UeJt® =

nX

i=1

e¸itpi(t)ui; (3:2:18)

where pi(t) is a polynomial in t, whose degree is at most equal to n ¡ 1. Note that in eq.(3.2.18) it does
happen that ¸i = ¸j for some i6= j. The computation of eJt is more cumbersome with respect to the case
of n distinct eigenvalues, and will not be treated in details.

3.3 - STABILITY OF LINEAR SYSTEMS

Let us recall that for \stability of a linear system" we mean the stability of the origin, being the only
equilibrium point which can be asymptotically stable and, in any case, its stability implies and is implied by

12



the stability of all the other equilibrium point (if any). Moreover, in case of linear systems, there is a great
advantage when dealing with stability: we know the explicit solution (eq.(3.2.14) for n distinct eigenvalues
and eq.(3.2.18) for multiple eigenvalues)!

Theorem 3.3.1. Consider the linear system de¯ned in (3:1:1). It is asymptotically stable if, and only
if, all its eigenvalues have (strictly) negative real part. In this case we have global, exponential stability.

Proof. The case of all strictly negative real eigenvalues excludes the possibility of null eigenvalues, that
means rank(A) = n: the origin is the only equilibrium point. The attractivity readily comes by exploiting
the explicit solutions (3.2.14) or (3.2.18). In both cases the evolution is the sum of decreasing exponentials
(the case of n distinct eigenvalues) or functions bounded by decreasing exponentials (the case of multiple
eigenvalues). Thus the attractivity is global with exponential rate. Stability also comes from the explicit
solutions. For instance, consider the case of n distinct eigenvalues: whatever small is set ", we can choose the
initial condition in order to have the coe±cients ci small enough to constrain x(t) within I"(0) (recall that
linear systems provide continuity with respect the initial condition, Remark 1.2.6). The proof is completed
analogously for multiple eigenvalues. }

Remark 3.3.2. Even if there were only one eigenvalue with positive real part (and all the other with
negative real part) the linear system would be unstable. ²

Theorem 3.3.3. Consider the linear system de¯ned in (3:1:1). It is stable if all its non-multiple
eigenvalues have non-positive real part, and all its multiple eigenvalues have (strictly) negative real part.

Proof. Non-multiple eigenvalues with non-positive real part means stable and asymptotically stable
natural modes, whose evolution can be constrained in any small neighborhood of the origin, due to the
continuity of the solution with respect to the initial state. In case of multiple eigenvalues, the hypothesis
of strictly negative eigenvalues prevents the case of elements in (3.2.18) with an eigenvalue ¸i with null real
part and a polynomial pi(t) with degree ¸ 1, which would make the evolution diverge to in¯nity. }

Remark 3.3.4. Theorem 3.3.3 provides a su±cient condition. Indeed, there are cases for which multiple
eigenvalues with null real part may produce stability (i.e. the degree of the corresponding polynomial pi(t)
in (3.2.18) is = 0). However, these cases are not treated here. ²

According to Theorems 3.3.1 and 3.3.3, the investigation of stability for linear systems reduces to the
analysis of the sign of the real part of the eigenvalues, whose explicit computation in the general case is
not trivial, unless we are considering a second-order system. Indeed the eigenvalues are the roots of the
characteristic equation:

d(¸) = det(¸In ¡A); (3:3:1)

which is an n-th degree polynomial equation. The following criterion allows to answer to the stability problem
without explicitely computing the eigenvalues.

Theorem 3.3.6 (Routh-Hurwitz Criterion). Let

p(¸) = ®n¸
n + ®n¡1¸

n¡1 + ¢ ¢ ¢+ ®1¸ + ®0; (3:3:2)

an n-th degree polynomial (®n 6= 0). Consider Table 3.3.1, with:

i) a0i = ®i; i = n; n¡ 2; n¡ 4; : : :;

ii) a1i = ®i; i = n¡ 1; n¡ 3; n¡ 5; : : :;

iii) aj
i = ¡ bji

aj¡1
n+1¡j

; bji =

¯̄
¯̄
¯

aj¡2
n+2¡j aj¡2

i

aj¡1
n+1¡j aj¡1

i¡1

¯̄
¯̄
¯
; j = 2; 3; : : : ; n; i = n¡ j; n¡ j ¡ 2; ¢ ¢ ¢ :
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n

n¡ 1

n¡ 2

n¡ 3
...

3

2

1

0

¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄

a0n a0n¡2 a0n¡4 a0n¡6 ¢ ¢ ¢

a1n¡1 a1n¡3 a1n¡5 a1n¡7 ¢ ¢ ¢

a2n¡2 a2n¡4 a2n¡6 ¢ ¢ ¢

a3n¡3 a3n¡5 a3n¡7 ¢ ¢ ¢
...

...

an¡3
3 an¡3

1

an¡2
2 an¡2

0

an¡1
1

an
0

Table 3.3.1 - Routh-Hurwitz table

If the table can be completed (that means if the ¯rst column elements are all nontrivial, no roots are expected
with null real part. Then we consider the sign of the ¯rst column elements. The number of sign varia-
tions between adjacent elements provides the number of roots with positive real part. In order to simplify
computations, all the elements of a row can be multiplied per a strictly positive coe±cient

Remark 3.3.7. A necessary condition required to obtain that all the roots have strictly negative real
part, is that all the polynomial coe±cients must have the same sign ²

Remark 3.3.8. In case of a null element in the ¯rst column, the table cannot be completed. However
if there are no other null elements in the row, the following alternative ways can be follow to complete the
table:

a) substitute the null element with the in¯nitesimal quantity " > 0, and keep on building the table and
working on it. Assuming the in¯nitesimal quantity " < 0 does not change the result;

b) multiply the original polynomial per a further polynomial with known nontrivial roots; then re-compute
the coe±cients and write down the table. This second approach is heuristic and does not guarantee to
solve the problem. ²
Example 3.3.9 Let d(¸) be the characteristic polynomial of a linear system:

d(¸) = ¸5 + ¸4 + ¸3 + ¸2 + ¸+ 2: (3:3:3)

When building the Routh-Hurwitz table in order to investigate how many roots with positive real part come
out, we have:

5
4
3

¯̄
¯̄
¯̄

1 1 1
1 1 2
0 ¡1

Since only the ¯rst element of the third row is null, we can complete the table by substituting 0 7! " > 0:

5
4
3
2
1
0

¯̄
¯̄
¯̄
¯̄
¯̄
¯

1 1 1
1 1 2
" ¡1

1=" 2

¡1
2

Note that we have taken into account the fact that " is in¯nitesimal, therefore:

a32 =
1 + "

"
=

1

"
; a41 = ¡1¡ 2"2 = ¡1: (3:3:4)
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By computing how many variations occur in the ¯rst column:

1 1 " 1
"

¡1 2
P P P V V

we have 2 variations, that means 2 roots with positive real part, that means 2 eigenvalues with positive real
part: the linear system is unstable. In case of choosing " < 0, there would have been no change in the ¯nal
result, indeed:

1 1 " 1
"

¡1 2
P V P P V

If we use the second approach reported in Remark 3.3.8, we can multiply d(¸) per ¸ + 1:

~d(¸) = d(¸)(¸ + 1) = ¸6 + 2¸5 + 2¸4 + 2¸3 + 2¸2 + 3¸ + 2: (3:3:5)

We are now able to build the Routh-Hurwitz table

6
5
4
3
2
1
0

¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯

1 2 2 2
2 2 3
1 1=2 2

=)

6
5
4
3
2
1
0

¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯

1 2 2 2
2 2 3
2 1 4
1 ¡1
3 4

¡7=3

4

from which we obtain again 2 variations:

1 2 2 1 3 ¡ 7
3

4
P P P P V V

²
Remark 3.3.10. When building the Routh-Hurwitz table for a polynomial like (3.3.2), in case all the

elements of a row vanish, the following algorithm can be used:
i) the null-row is necessarily an odd row, and the polynomial can be factorized in: p(¸) = p1(¸)p2(¸), with

polynomials p1(¸) and p2(¸) described as follows;
ii) the analysis concerning the sign of the real part of the roots of p1(¸) is done by counting the sign

variations of the ¯rst column of the incomplete table;
iii) polynomial p2(¸) has all even powers, and can be written by using the coe±cients of the row immediately

before the null-row; for instance, by assuming the following scheme:

6

5

¯̄
¯̄
¯̄
an¡6
6 an¡6

4 an¡6
2 an¡6

0

0 0 0

we have:
p2(¸) = an¡6

6 ¸6 + an¡6
4 ¸4 + an¡6

2 ¸2 + an¡6
0 ; (3:3:6)

iv) compute the derivative
dp2
d¸

= ~p(¸);

v) substitute in the Routh-Hurwitz table the null-row with the coe±cients of ~p(¸);
vi) complete the table and consider the sign variation in the ¯rst column referred only to the second part

of the table;
vii) in this case a variation corresponds to a pair of roots with nontrivial real part and opposite sign;
viii) if the sum of the roots of p1(¸) and the pair of roots with nontrivial real part of p2(¸) is not n, the

remaining roots of d(¸) have null real part. ²
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Example 3.3.11. Let d(¸) be the characteristic polynomial of a linear system:

d(¸) = ¸7 + 3¸6 + 2¸5 + 6¸4 + 5¸3 + 15¸2 + 4¸ + 12: (3:3:7)

When building the Routh-Hurwitz table in order to investigate how many roots with positive real part come
out, we have:

7
6
5

¯̄
¯̄
¯̄

1 2 5 4
3 6 15 12 =)

7
6
5

¯̄
¯̄
¯̄

1 2 5 4
1 2 5 4
0 0 0

The 5-th row is made of all null elements. By applying the criterion suggested in Remark 3.3.10, we have
no change in sign for the ¯rst part of the table, that means d1(¸) has just one root with negative real part.
Then, we write d2(¸) as:

d2(¸) = ¸6 + 2¸4 + 5¸2 + 4 =) d02(¸) = 6¸5 + 8¸3 + 10¸:

Finally, we substitute the 5-th null row with the coe±cients of d02(¸) and we complete the Routh-Hurwitz
table:

7
6
5
4
3
2
1
0

¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯

1 2 5 4
1 2 5 4
3 4 5

2=3 10=3 4
=)

7
6
5
4
3
2
1
0

¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯

1 2 5 4
1 2 5 4
3 4 5
1 5 6

¡11 ¡13

42=11 6

=)

7
6
5
4
3
2
1
0

¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯

1 2 5 4
1 2 5 4
3 4 5
1 5 6

¡11 ¡13
7 11

30=7

11

When computing the number of variations in sign, starting from the 5-th row, we have:

3 1 ¡11 7 30
7

11
P V V P P

These 2 variations mean 2 pairs of roots with nontrivial real part and opposite sign, that means: 2 roots
with positive real part and 2 roots of negative real part. Since the sum of the whole number of roots is 1
(coming from d1(¸)) and 4 (coming from d2(¸)) equal to 5, and we have a 7-th order polynomial, we still
have to consider a couple of roots with null real part. Thus, the linear system is unstable. ²

4 - QUALITATIVE BEHAVIOR OF SOLUTIONS

4.1 - THE PLANAR LINEAR CASE

In this section we investigate the qualitative behavior of the solutions of a linear system in the neigh-
borhood of the origin. When dealing with second-order systems, a useful tool to this aim are the vector ¯eld
diagrams, that are plots on the state space where at each point ¹x of the plane is drawn a vector with the
same direction of f(¹x) and a length proportional to kf(¹x)k. Point after point, any trajectory related to the
system under investigation follows the direction of the vector ¯eld. The set of all the trajectories is called
the phase portrait.

16



Let us consider a second-order linear system:

_x(t) = Ax(t); x(0) = x0 x(t) 2 IR2; A 2 IR2£2: (4:1:1)

The goal of our investigation is to distinguish among di®erent qualitative behaviors around the origin ac-
cording to di®erent sets of matrix A eigenvalues.

i) Distinct, real, negative eigenvalues: the origin is a STABLE NODE. According to the spectral
decomposition (3.2.14), the time evolution is the sum of two asymptotically stable aperiodic natural
modes:

x(t) = e¸1tc1u1 + e¸2tc2u2; ¸1; ¸2 2 IR; ¸1 < ¸2 < 0: (4:1:2)

In case of x0 proportional to one of the two eigenvectors, e.g. u1, the evolution reduces to:

x(t) = e¸1tc1u1; ¸1 < 0; (4:1:3)

thus wherever x0 is placed on the rightline r1 containing u1, x(t) approaches the origin along r1 in an
in¯nite time, with rate j¸1j. Otherwise the evolution follows a more generic trajectory in the plane which
again approaches the origin in an in¯nite time. In any case, no oscillations occur. Fig.4.1.1 reports the
vector ¯eld diagram (in blue) when the origin is a stable node: the rightlines containing u1 and u2 are
the x-axis and the other black line; red lines are some trajectories from the phase portrait, according to
di®erent initial states.

Fig. 4.1.1 - Vector ¯eld diagram of a stable node.

ii) Distinct, real, positive eigenvalues: the origin is an UNSTABLE NODE. According to the
spectral decomposition (3.2.14), the time evolution is the sum of two unstable aperiodic natural modes:

x(t) = e¸1tc1u1 + e¸2tc2u2; ¸1; ¸2 2 IR; 0 < ¸1 < ¸2: (4:1:4)

In case of x0 proportional to one of the two eigenvectors, e.g. u1, the evolution reduces to:

x(t) = e¸1tc1u1; ¸1 > 0; (4:1:5)

thus wherever x0 is placed on the right line r1 containing u1, x(t) escapes from the origin diverging
to in¯nity along r1 in an in¯nite time, with rate ¸1. Otherwise the evolution follows a more generic
trajectory in the plane which again escapes from the origin diverging to in¯nity in an in¯nite time. No
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oscillations occur. Fig.4.1.2 reports the vector ¯eld diagram (in blue) when the origin is an unstable
node: the rightlines containing u1 and u2 are the x-axis and the other black line; red lines are some
trajectories from the phase portrait, according to di®erent initial states.

Fig. 4.1.2 - Vector ¯eld diagram of an unstable node.

iii) Distinct, real, positive and negative eigenvalues: the origin is a SADDLE NODE. According
to the spectral decomposition (3.2.14), the time evolution is the sum of an asymptotically stable + an
unstable mode, both aperiodic:

x(t) = e¸1tc1u1 + e¸2tc2u2; ¸1; ¸2 2 IR; ¸1 < 0 < ¸2: (4:1:6)

In case of x0 proportional to the eigenvector u1, related to the negative eigenvalue, the evolution reduces
to the one in (4.1.3), thus wherever x0 is placed on the rightline r1 containing u1, x(t) approaches the
origin along r1 in an in¯nite time, with rate j¸j; otherwise the evolution is composed by the linear
combination of an increasing and a decreasing exponential, thus resulting in a generic trajectory always
escaping from the origin and diverging to1 in an in¯nite time, asymptotically approaching the rightline
r2 containing u2. The case of approaching the origin occurs only if the initial state lies on r1. No
oscillations occur. Fig.4.1.3 reports the vector ¯eld diagram (in blue) when the origin is a saddle node:
the rightlines containing u1 and u2 are the x-axis and the other black line, respectively; red lines are
some trajectories from the phase portrait, according to di®erent initial states.

iv) Complex eigenvalues, with negative real part: the origin is a STABLE FOCUS. According
to the spectral decomposition (3.2.14), the time evolution is an asymptotically stable pseudoperiodic
mode thus, from (3.2.17):

x(t) = 2½e®t
³

cos(¯t + µ)u® ¡ sin(¯t + µ)u¯

´
; ¸ = ®§ j¯; c = ½e§jµ; u = u® § ju¯; ® < 0:

(4:1:7)
In this case, wherever x0 is placed, the evolution is a spiral converging to the origin in an in¯nite time,
with exponential decay rate j®j. Fig.4.1.4 reports the vector ¯eld diagram (in blue) when the origin is a
stable focus; red lines are some trajectories from the phase portrait, according to di®erent initial states.

v) Complex eigenvalues, with positive real part: the origin is an UNSTABLE FOCUS. Ac-
cording to the spectral decomposition (3.2.14), the time evolution is an unstable pseudoperiodic mode
thus, from (3.2.17):

x(t) = 2½e®t
³

cos(¯t + µ)u® ¡ sin(¯t + µ)u¯

´
; ¸ = ®§ j¯; c = ½e§jµ; u = u® § ju¯; ® > 0:

(4:1:8)
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In this case, wherever x0 is placed, the evolution is a spiral escaping from the origin, diverging to in¯nity
in an in¯nite time, with exponential rate ®. Fig.4.1.5 reports the vector ¯eld diagram (in blue) when
the origin is an unstable focus; red lines are some trajectories from the phase portrait, according to
di®erent initial states.

Fig. 4.1.3 - Vector ¯eld diagram of a saddle node.

Fig. 4.1.4 - Vector ¯eld diagram of a stable focus.

vi) Complex eigenvalues, with null real part: the origin is a CENTER. According to the spectral
decomposition (3.2.14), the time evolution is a stable periodic mode thus, from (3.2.16):

x(t) = 2½
³

cos(¯t + µ)u® ¡ sin(¯t + µ)u¯

´
; ¸ = §j¯; c = ½e§jµ; u = u® § ju¯ : (4:1:9)

In this case, wherever x0 is placed, the evolution is a closed orbit with period equal to 2¼=¯. It has to be
stressed that these kind of periodic orbits are very sensitive to the model parameters, since the eigenvalue
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must have exactly null real part: any other value would produce stable/unstable foci. Moreover, the
amplitude of these orbits depends on the initial condition: by increasing/decreasing the length ½ of the
initial condition vector, the amplitude of the orbit increases/decreases. Fig.4.1.6 reports the vector ¯eld
diagram (in blue) when the origin is center; red lines are some trajectories from the phase portrait,
according to di®erent initial states.

Fig. 4.1.5 - Vector ¯eld diagram of an unstable focus.

Other possibilities may occur, but they produce results that can be represented by the previous cases.
vii) One multiple, real, negative eigenvalue: the origin behaves like a STABLE NODE.According

to the spectral decomposition (3.2.18), concerning multiple eigenvalues, we can have the following two
cases:

vii-a) polynomials pi(t), i = 1; 2, in (3.2.18) have both degree 0:

x(t) = e¸1t
¡
c1u1 + c2u2

¢
; ¸1 2 IR; ¸1 < 0; (4:1:10)

with both u1, u2 non-generalized eigenvectors. The position of the initial state in the state plane
(x0 = c1u1 + c2u2) gives us the direction r according to which the evolution converges to the origin
in an exponential fashion with rate j¸1j: the trajectory is a segment on r, since the direction does
not change with time t. Fig.4.1.7 reports the vector ¯eld diagram (in blue) when the origin behaves
like a stable node with a multiple eigenvalue but no generalized eigenvectors; red lines are some
trajectories from the phase portrait, according to di®erent initial states.

vii-b) one of the two polynomials in (3.2.18) has degree 1:

x(t) = e¸1t
¡
(c1 + tc2)u1 + c2u2

¢
; ¸1 2 IR; ¸1 < 0; (4:1:11)

where c1 and c2 are the coordinates of the initial state with respect to u1 (non-generalized eigenvec-
tor) and u2 (generalized eigenvector), respectively. In case of x0 proportional to u1, the evolution
reduces to the one in (4.1.3), thus wherever x0 is placed on the rightline r1 containing u1, x(t) ap-
proaches the origin along r1 in an in¯nite time, with rate j¸1j. Otherwise, there are no other cases
with no change in the direction since, even if x0 is proportional to u2, equation (4.1.10) becomes:

x(t) = e¸1tc2
¡
tu1 + u2

¢
; ¸1 2 IR; ¸1 < 0: (4:1:12)

Therefore, if x0 does not belong to r1 we have a generic curve converging to the origin with no
oscillations. In any case, all the curves converge to the origin with a slope asymptotically converging
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to the one of r1 since, for great values of time t, it is (c1+tc2)u1+c2u2 ' tc2u1. Fig.4.1.8 reports the
vector ¯eld diagram (in blue) when the origin behaves like a stable node with a multiple eigenvalue
and generalized eigenvectors; the black line gives the direction r1 of the non-generalized eigenvector;
red lines are some trajectories from the phase portrait, according to di®erent initial states.

Fig. 4.1.6 - Vector ¯eld diagram of center.

Fig. 4.1.7 - Vector ¯eld diagram for a multiple real negative eigenvalue without generalized eigenvectors.

viii) One multiple, real, positive eigenvalue: the origin behaves like an UNSTABLE NODE.
According to the spectral decomposition (3.2.18), concerning multiple eigenvalues, we can have the
following two cases:

viii-a) polynomials pi(t), i = 1; 2, in (3.2.18) have both degree 0:

x(t) = e¸1t
¡
c1u1 + c2u2

¢
; ¸1 2 IR; ¸1 > 0; (4:1:13)

with both u1, u2 non-generalized eigenvectors. The position of the initial state in the state plane
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(x0 = c1u1+ c2u2) gives us the direction r according to which the evolution escapes from the origin
to in¯nity in an exponential fashion with rate ¸1: the trajectory is a hal°ine of r, since the direction
does not change with time t. Fig.4.1.9 reports the vector ¯eld diagram (in blue) when the origin
behaves like an unstable node with a multiple eigenvalue but no generalized eigenvectors; red lines
are some trajectories from the phase portrait, according to di®erent initial states.

Fig. 4.1.8 - Vector ¯eld diagram for a multiple real negative eigenvalue with generalized eigenvectors.

Fig. 4.1.9 - Vector ¯eld diagram for a multiple real positive eigenvalue without generalized eigenvectors.

viii-b) one of the two polynomials in (3.2.18) has degree 1:

x(t) = e¸1t
¡
(c1 + tc2)u1 + c2u2

¢
; ¸1 2 IR; ¸1 > 0; (4:1:14)

where c1 and c2 are the coordinates of the initial state with respect to u1 (non-generalized eigenvec-
tor) and u2 (generalized eigenvector), respectively. In case of x0 proportional to u1, the evolution
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reduces to the one in (4.1.5), thus wherever x0 is placed on the rightline r1 containing u1, x(t)
escapes from the origin to in¯nity along r1 in an in¯nite time, with rate ¸1. Otherwise, there are no
other cases with no change in the direction since, even if x0 is proportional to u2, equation (4.1.13)
becomes:

x(t) = e¸1tc2
¡
tu1 + u2

¢
; ¸1 2 IR; ¸1 > 0: (4:1:15)

Therefore, if x0 does not belong to r1 we have a generic curve escaping from the origin to in¯nity
with no oscillations. In any case, all the diverging curves have a slope converging to the one of
r1 since, for great values of time t, it is (c1 + tc2)u1 + c2u2 ' tc2u1. Fig.4.1.10 reports the vector
¯eld diagram (in blue) when the origin behaves like a stable node with a multiple eigenvalue and
generalized eigenvectors; the black line gives the direction r1 of the non-generalized eigenvector;
red lines are some trajectories from the phase portrait, according to di®erent initial states.

Fig. 4.1.10 - Vector ¯eld diagram for a multiple real positive eigenvalue with generalized eigenvectors.

All previous cases deal with the origin as the only equilibrium point of the linear system. Below follow
three other cases, known as degenerate cases, involving a singular matrix A: the origin is no more the only
equilibrium point.
ix) Distinct, real, eigenvalues; one null, the other negative: DEGENERATE STABLE CASE.

According to the spectral decomposition (3.2.14), the time evolution is the sum of a stable (null eigen-
value) + an asymptotically stable aperiodic mode:

x(t) = c1u1 + e¸tc2u2; ¸ 2 IR; ¸ < 0: (4:1:16)

In case of x0 proportional to u1, the eigenvector related to the null eigenvalue, the evolution reduces
to: x(t) = c1u1, thus wherever x0 is placed on the rightline r1 containing u1, x(t) does not move with
time and the trajectory is trivially the point c1u1. Indeed, the points on r1 are all equilibrium points.
Otherwise the evolution will follow a straight line converging to the line r1, according to a direction
which is the same of u2. Fig.4.1.11 reports the vector ¯eld diagram (in blue) where u1 belongs to the
x-axis, and u2 is the other black line; red lines are some trajectories from the phase portrait, according
to di®erent initial states.

x) Distinct, real, eigenvalues; one null, the other positive: DEGENERATE UNSTABLE
CASE. According to the spectral decomposition (3.2.14), the time evolution is the sum of a stable (null
eigenvalue) + an unstable aperiodic mode:

x(t) = c1u1 + e¸tc2u2; ¸ 2 IR; ¸ > 0: (4:1:17)

23



In case of x0 proportional to u1, the eigenvector related to the null eigenvalue, the evolution reduces
to: x(t) = c1u1, thus wherever x0 is placed on the rightline r1 containing u1, x(t) does not move with
time and the trajectory is trivially the point c1u1. Indeed, the points on r1 are all equilibrium points.
Otherwise the evolution will follow a straight line escaping from the line r1 and diverging to in¯nity,
according to a direction which is the same of u2. Fig.4.1.12 reports the vector ¯eld diagram (in blue)
where u1 belongs to the x-axis, and u2 is the other black line; red lines are some trajectories from the
phase portrait, according to di®erent initial states.

Fig. 4.1.11 - Vector ¯eld diagram for distinct real eigenvalues: one null, the other negative.

Fig. 4.1.12 - Vector ¯eld diagram for distinct real eigenvalues: one null, the other positive.

xi) One multiple, null eigenvalue. According to the spectral decomposition (3.2.18), concerning multiple
eigenvalues, we can have the following two cases:

xi-a) polynomials pi(t), i = 1; 2, in (3.2.18) have both degree 0:

x(t) = c1u1 + c2u2; (4:1:18)
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with both u1, u2 non-generalized eigenvectors. As it clearly appears from (4.1.18) there is no
motion wherever is the initial state x0: indeed, any point is an equilibrium point and all possible
trajectories are trivially points in the state space. This is a degenerate stable case.

xi-b) one of the two polynomials in (3.2.18) has degree 1:

x(t) = (c1 + tc2)u1 + c2u2; (4:1:19)

where c1 and c2 are the coordinates of the initial state with respect to u1 (non-generalized eigenvec-
tor) and u2 (generalized eigenvector), respectively. In case of x0 proportional to u1, the evolution
reduces to:

x(t) = c1u1; (4:1:20)

thus wherever x0 is placed on the rightline r1 containing u1, there is no motion: indeed any point
in r1 is an equilibrium point. Otherwise, if x0 does not belong to r1, we have a generic curve
escaping from the origin to in¯nity, with no oscillations, along a rightline parallel to r1. The vector
¯eld diagram is the same of Fig.4.1.12; the black line gives the direction r1 of the non-generalized
eigenvector; red lines are some trajectories from the phase portrait, according to di®erent initial
states.

4.2 - THE MULTIDIMENSIONAL LINEAR CASE

Let us consider a generic n-dimensional linear system like the one de¯ned in (3.1.1). When dimension n
is greater than 2, vector ¯eld diagrams and phase portraits are quite more di±cult to represent (they could
be generalized for n = 3 on the Euclidean space) and much more hard to interpret. Moreover also the range
of possibilities increases. For these reasons in this Section only most important n-dimensional generalizations
will be considered.

i) All distinct, real, negative eigenvalues: the origin is a STABLE NODE. According to the
spectral decomposition (3.2.14), the time evolution is the sum of n asymptotically stable aperiodic
natural modes. In case of x0 proportional to a subset fu1; : : : ; umg of the eigenvectors (let us assume
without loss of generality the ¯rst m < n), the evolution x(t) converges to the origin in an in¯nite time,
evolving on the subspace spanfu1; : : : ; umg. Otherwise the evolution follows a more generic trajectory
in the state space which again approaches the origin in an in¯nite time. In any case, no oscillations
occur.

ii) All distinct, real, positive eigenvalues: the origin is an UNSTABLE NODE. According to the
spectral decomposition (3.2.14), the time evolution is the sum of n unstable aperiodic natural modes.
In case of x0 proportional to a subset fu1; : : : ; umg of the eigenvectors (let us assume without loss of
generality the ¯rst m < n), the evolution x(t) escapes from the origin to in¯nity in an in¯nite time,
evolving on the subspace spanfu1; : : : ; umg. Otherwise the evolution follows a more generic trajectory
in the state space which again escapes from the origin to in¯nity in an in¯nite time. In any case, no
oscillations occur.

iii) All distinct, real, eigenvalues, some positive, some negative: the origin is a SADDLE
NODE. According to the spectral decomposition (3.2.14), the time evolution is the sum of some (let
us say n1 < n) asymptotically stable aperiodic and some other (n2 = n¡n1) unstable aperiodic natural
modes. In case of x0 proportional to a subset of the eigenvectors related to the asymptotically stable
modes, the evolution x(t) converges to the origin in an in¯nite time, evolving on the subspace generated
by those eigenvectors; on the other hand, in case of x0 proportional to a subset of the eigenvectors
related to the unstable modes, the evolution x(t) escapes from the origin to in¯nity in an in¯nite time,
evolving on the subspace generated by those eigenvectors. In the general framework, the evolution x(t)
escapes from the origin to in¯nity in an in¯nite time, with the evolution asymptotically converging to
the subspace generated by the eigenvectors related to the unstable modes. In any case, no oscillations
occur.

25



iv) All distinct eigenvalues, some complex, all with negative real part: the origin is a STA-
BLE FOCUS. According to the spectral decomposition (3.2.14), the time evolution is the sum of
asymptotically stable aperiodic and pseudoperiodic modes. In case of x0 proportional to a subset of
the eigenvectors related to the aperiodic modes, the evolution x(t) converges to the origin in an in¯nite
time, evolving on the subspace generated by these eigenvectors with no oscillations (actually behaving
as if the origin were a stable node); otherwise in the general case, the pseudo-periodic modes make it
so that the evolution is a spiral converging to the origin in an in¯nite time, with oscillations.

v) All distinct eigenvalues, some complex, all with positive real part: the origin is an UN-
STABLE FOCUS. According to the spectral decomposition (3.2.14), the time evolution is the sum of
unstable aperiodic and pseudoperiodic modes. In case of x0 proportional to a subset of the eigenvectors
related to the aperiodic modes, the evolution x(t) escapes from the origin to in¯nity in an in¯nite time,
evolving on the subspace generated by these eigenvectors with no oscillations (actually behaving as if
the origin were an unstable node); otherwise in the general case, the pseudoperiodic modes make it so
that the evolution is a spiral escaping from the origin to in¯nity in an in¯nite time, with oscillations.

vi) All distinct eigenvalues, some complex with pure imaginary eigenvalues, the others neg-
ative real: the origin is a CENTER. According to the spectral decomposition (3.2.14), the time
evolution is the sum of asymptotically stable aperiodic and stable periodic modes. In case of x0 pro-
portional to a subset of the eigenvectors related to the aperiodic modes, the evolution x(t) converges to
the origin in an in¯nite time, evolving on the subspace generated by these eigenvectors with no oscilla-
tions (actually behaving as if the origin were a stable node); otherwise in the general case, the stable
periodic modes make it so that the evolution converges to a closed orbit in the subspace generated by
the eigenvectors related to the periodic modes.

4.3 - THE GENERAL NONLINEAR CASE

All the previous qualitative behaviors around the equilibrium points of linear systems have the common
denominator of being global. For instance, consider the case of a saddle node: if the initial condition belongs
to the subspace generated by only eigenvectors related to the asymptotically stable eigenvalues, the time
evolution will de¯nitely converge to the origin, no matter how far from the origin it is. These properties no
longer belong to the qualitative behavior around the equilibrium points of nonlinear system which, therefore,
is just a local qualitative behavior.

Let us consider a time-invariant, nonlinear system as the one de¯ned in (2.1.1) with xe one of its
equilibrium points (recall that nonlinear systems may have many equilibrium points). According to the
Taylor series expansion around xe, system (2.1.1) can be written as:

_x(t) = f(xe) + J(xe)
¡
x(t)¡ xe

¢
+ h

¡
x(t)¡ xe

¢
; (4:3:1)

with:

J(x) =
df

dx
=

2

6
4

@f1
@x1

¢ ¢ ¢ @f1
@xn

...
. . .

...
@fn
@x1

¢ ¢ ¢ @fn
@xn

3

7
5 ; (4:3:2)

the Jacobian matrix of function f(¢) and h(¢) : IRn 7! IRn the residual of the ¯rst-order Taylor expansion,
such that:

lim
kzk7!0

°°h
¡
kzk

¢°°

kzk = 0: (4:3:3)

Remark 4.3.1. De¯ne the displacement z(t) = x(t)¡ xe. Note that its dynamics is given by:

_z(t) = J(xe)z(t) + h
¡
z(t)

¢
: (4:3:4)
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Thus, the qualitative behavior of x(t) around the equilibrium point xe is the same as the one of z(t) around
the origin. Moreover, if J(xe) has no null eigenvalues, if z(t) is close enough to the origin, then the residual
h(¢) can be neglected with respect to the linear part (thanks to the limit (4.3.3)); on the other hand, if J(xe)
has a null eigenvalue, then there exists at least one direction according to which _z(t) = h

¡
z(t)

¢
, that means

h(¢) cannot be neglected. ²

According to Remark 4.3.1, if the origin of the linear approximation _z(t) = J(xe)z(t) is a stable-
unstable-saddle node or a stable-unstable focus, then the equilibrium point xe exhibits the qualitative local
behavior of a stable-unstable-saddle node or of a stable-unstable focus, since there exists a neighborhood
of the equilibrium point small enough to allow the linear approximation very well resemble the original
nonlinear evolution.

Nonlinear systems can provide periodic orbits whose characteristics are di®erent from the ones of a
linear center. In the linear case they are very sensitive to the system parameters, and strongly depend of
the initial condition: we can have a continuum of periodic orbits by varying the initial conditions. On the
other hand, nonlinear ODE can produce isolated periodic orbits (called limit cycles), which the system
evolution de¯nitely approaches as time t goes to +1. Di®erently from the linear case they do not depend
on the initial condition.

Remark 4.3.2. A limit cycle ° can be:

{ stable, if for any nontrivial (i.e. with nontrivial measure) region D" containing the limit cycle °, there
exists a nontrivial inner region D± µ D" containing ° such that, for any initial point x0 2 D± the
evolution x(t) is constrained in D" and converges to the limit cycle °. In Fig.4.3.1, the vector ¯eld
diagram of a stable limit cycle in the planar case is shown;

{ unstable if, no matter how close (inner or outer) to the limit cycle the initial condition is, the evolution
de¯nitely escapes from °. In Fig.4.3.2, the vector ¯eld diagram of an unstable limit cycle is shown, with
a locally asymptotically stable inner equilibrium point. ²

Fig. 4.3.1 - Vector ¯eld diagram for a stable limit cycle.

In case of time-invariant, second-order systems, the following criterion holds true:

Theorem 4.3.3 (Poincar¶e-Bendixon Criterion). Consider a second-order time-invariant nonlinear
system and D a closed bounded subset such that:
i) every trajectory starting from a point in D remains in D;

ii) D does not contain equilibrium points, or contains only one unstable node or only one unstable focus.

Then, D contains a limit cycle.
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Remark 4.3.4. The Poincar¶e-Bendixon Criterion may be restated saying that, for time-invariant,
second order systems, whenever we know that the trajectory is bounded in a closed subset, then there can
be convergence to an inner equilibrium point or to an inner limit cycle. ²

Fig. 4.3.2 - Vector ¯eld diagram for an unstable limit cycle.

In case of nonlinear systems, a further qualitative behavior can occur, known as chaos. It occurs
when, regardless how close a couple of initial conditions are chosen, the two evolutions will de¯nitely become
completely di®erent as time t increases. In Fig.4.3.3, a second-order, time-varying system is considered:
it clearly appears that after a transient during which the two evolutions (one in blue, the other in red)
are indistinguishable because of the choice of two initial states very close one each other, they follow two
distinct ways of evolution. Chaotic systems are extremely sensitive to the initial conditions: a very small
perturbation de¯nitely produces a signi¯cative change in the evolution.

Fig. 4.3.3 - Chaotic time evolutions for the components of a second-order, time-varying nonlinear system.

Although a chaotic system does not provide limit cycles, the evolution in the state space is as well bounded in
a region known as the attractor. Therefore, according to the Poincar¶e-Bendixon criterion a chaotic behavior
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cannot occur for time-invariant second-order systems; on the other hand, for third-order (or higher-order)
systems, curves may be slanted and a state evolution can persists in a bounded region without ever allowing
intersections. In Fig.4.3.4 the chaotic attractor related to the chaotic evolutions of Fig.4.3.3 is reported.

Fig. 4.3.4 - A chaotic attractor for a second-order, time-varying nonlinear system.

4.4 - BIFURCATION

Bifurcation theory takes into account what happens to the qualitative behavior around an equilibrium
point when one or more parameters vary around their nominal values. To this aim the equilibrium points
can be divided in hyperbolic and non-hyperbolic. The formers refer to the case of eigenvalues (of the Jacobian
matrix) with non trivial real part. These equilibrium points show structural stability since small changes
in the model parameters (which produce small changes in the placement of the eigenvalues on the complex
plane) do not change the feature of the equilibrium point (an asymptotically stable node/focus is still an
asymptotically stable node/focus according to small variation of a system parameter as well as unstable
nodes/foci and saddle nodes). On the other hand, non-hyperbolic equilibrium points refer to the case of
trivial (null) real part. In this case a small variation in a system parameter may well change the feature of
the qualitative behavior: for instance, a center in a linear system may change into an asymptotically stable
focus or into an unstable focus.

In this section, the case of only one varying parameter will be considered. In this framework, a bi-
furcation is a change in the qualitative behavior occurring when a parameter reaches a given value (the
bifurcation value). They are generally described by bifurcation diagrams which in their simplest repre-
sentation are planar diagrams referring the position of the equilibria versus the bifurcation parameter. Below
follow classical bifurcation cases.

a) SADDLE-NODE BIFURCATION. It occurs when, by crossing the bifurcation value, a pair of
equilibrium points (usually an asymptotically stable and an unstable/saddle node) converge to the
same point and then both vanish. For instance, consider the system:

_x(t) = ¹¡ x2(t): (4:4:1)

It admits a couple of equilibrium points when ¹ > 0 in x1 =
p
¹ and x2 = ¡p¹; x1 is a stable

node while x2 is an unstable node. Otherwise, no equilibrium points exist. ¹ = 0 is the bifurcation
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value. In Fig.4.4.1 the saddle-node bifurcation diagram is reported: the continuous line refers to the
asymptotically stable equilibrium point, while the dotted line refers to the unstable equilibrium point.

Fig. 4.4.1 - Saddle-node bifurcation diagram.

This kind of bifurcation is known as dangerous (or hard), since it introduces a strong change of behavior
before and after the crossing of the bifurcation value. Imagine ¹ assumes a positive small value: even if
small, its positivity provides that all the trajectories starting from x0 > ¡p¹ converge to

p
¹. On the

contrary, if ¹ assumes a negative small value, wherever is placed the initial state x0, the trajectory will
de¯nitely diverge to ¡1. In this case, a small perturbation able to change the sign of ¹ will make a
dramatic change in the qualitative behavior (see the vector ¯eld diagram of Fig.4.4.2).

Fig. 4.4.2 - Vector ¯eld diagram for system (4.4.1).

b) TRANSCRITICAL BIFURCATION. It occurs when, by crossing the bifurcation value, a pair
of equilibrium points with opposite qualitative behavior change their stability properties (e.g. the
asymptotically stable changes into unstable and viceversa). No change occurs in the number of the
equilibrium points. For instance, consider the system:

_x(t) = ¹x(t)¡ x2(t): (4:4:2)

For any value of the bifurcation parameter ¹, the system admits two distinct equilibrium points: x1 = 0
and x2 = ¹. For ¹ < 0 it is x1 asymptotically stable and x2 unstable, while for ¹ > 0 it is x1 unstable and
x2 asymptotically stable: by crossing the bifurcation value (¹ = 0), we keep unchanged the number of
the equilibrium points, but their qualitative behavior changes. In Fig.4.4.3 the transcritical bifurcation
diagram is reported: like in the saddle-node bifurcation, the continuous line refers to the asymptotically
stable equilibrium point, while the dotted line refers to the unstable equilibrium point. Di®erently from
the saddle-node bifurcation, the transcritical bifurcation is known as safe (or soft). Indeed, there is no
dramatic change in the qualitative behavior when the bifurcation parameter crosses its bifurcation value:
there are always two equilibrium points, the smaller unstable, the greater asymptotically stable (see the
vector ¯eld diagram of Fig.4.4.4). Moreover the bifurcation occurs when the two points coincide.
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Fig. 4.4.3 - Transcritical bifurcation diagram.

Fig. 4.4.4 - Vector ¯eld diagram for system (4.4.2).

c) PITCHFORK BIFURCATION. It occurs when, by crossing the bifurcation value, the only equi-
librium point changes its qualitative behavior and a couple of two more equilibrium points (both with
the same qualitative behavior) arise. For instance, consider the system:

_x(t) = ¹x(t)¡ x3(t): (4:4:3)

It admits only one equilibrium point (asymptotically stable) in x1 = 0 when ¹ < 0, and three equilibrium
points in x1 = 0 (unstable), x2 =

p
¹ (asymptotically stable) and x3 = ¡p¹ (asymptotically stable)

when ¹ > 0. In this case we deal with a supercritical pitchfork bifurcation, because the additional
equilibrium points occur when the origin changes from stable to unstable. In Fig.4.4.5 the supercritical
pitchfork bifurcation diagram is reported. A di®erent pitchfork bifurcation occurs for:

_x(t) = ¹x(t) + x3(t): (4:4:4)

In this case we have the opposite qualitative behavior: there is only one equilibrium point (unstable)
in x1 = 0 when ¹ > 0, and three equilibrium points in x1 = 0 (asymptotically stable), x2 =

p¡¹
(unstable) and x3 = ¡p¡¹ (unstable) when ¹ < 0. The additional equilibrium points, im this case
both unstable, occur when the origin changes from unstable to stable, and we call it a subcritical
pitchfork bifurcation. In Fig.4.4.6 the subcritical pitchfork bifurcation diagram is reported. Note that
the supercritical pitchfork bifurcation is safe, since a small change from ¹ < 0 into ¹ > 0 makes it so
that the origin (which was asymptotically stable for ¹ < 0) becomes unstable but bounded by a couple
of asymptotically stable new equilibrium points, close to the origin for small positive values of ¹. On
the other hand, the subcritical pitchfork bifurcation is dangerous, since a small change from ¹ > 0 into
¹ < 0 makes it so that the origin (which was asymptotically stable for ¹ < 0) becomes unstable and the
evolution de¯nitely diverges to in¯nity wherever is the initial state x0.

d) HOPF BIFURCATION. All previous bifurcation are referred to the case of bifurcation values which
make one eigenvalue of the Jacobian matrix (actually a scalar Jacobian in the aforementioned examples)
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cross the zero value. Hopf bifurcations refer to the crossing of the imaginary axis for a pair of eigenvalues,
thus it is required at least a second order system: it consists in a bifurcation which changes a focus into
a limit cycle. For instance, consider the second order system:

_x1(t) = x1(t)
¡
¹¡ x21(t)¡ x22(t)

¢
¡ x2(t);

_x2(t) = x2(t)
¡
¹¡ x21(t)¡ x22(t)

¢
+ x1(t):

(4:4:5)

Fig. 4.4.5 - Supercritical pitchfork bifurcation diagram.

Fig. 4.4.6 - Subcritical pitchfork bifurcation diagram.

It can be shown that the origin is the only equilibrium point. For ¹ < 0 we have a couple of complex
eigenvalues in the negative real half-plane: an asymptotically stable focus. For ¹ > 0 we have a couple of
complex eigenvalue in the positive real half-plane: an unstable focus, which provides a stable limit cycle.
This is the example of a supercritical Hopf bifurcation. In this case, the polar coordinates (x1 = ½ cos µ,
x2 = ½ sin µ) allow us to better understand the feature of the limit cycle. Indeed, in polar coordinates,
system (4.4.5) becomes:

_½(t) = ½(¹¡ ½2);

_µ(t) = 1;
(4:4:6)
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from which it follows that a nontrivial limit cycle occurs for ¹ > 0, that it is a circumference with radius
½ =

p
¹, and that it is a stable limit cycle, since the Jacobian J(½) = ¹¡3½2 is negative when computed

in ½ =
p
¹. In Fig.4.4.7 the supercritical Hopf bifurcation diagram is reported: note that on the y-axis

the radius of the limit cycle is reported, with ¯lled circles as markers of the stable limit cycle.

Fig. 4.4.7 - Supercritical Hopf bifurcation diagram.

It has to be stressed that the supercritical Hopf bifurcation is safe. Indeed, when approaching the
bifurcation value from positive decreasing values of the bifurcation parameter ¹, we have the occurrence
of a stable limit cycle whose radius reduces uniformly with ¹; thus, when ¹ becomes negative, providing
an asymptotically stable focus, there is a very little change in the vector ¯eld diagram, as it can
be appreciated from Fig.4.4.8, where decreasing values of ¹ are considered from the greater positive
(Fig.4.4.8-A) to the smaller positive (Fig.4.4.8-C) and ¯nally to the negative value (Fig.4.4.8-D).
A di®erent Hopf bifurcation occurs for:

_x1(t) = x1(t)
³
¹ + x21(t) + x22(t)¡

¡
x21(t) + x22(t)

¢2´¡ x2(t);

_x2(t) = x2(t)
³
¹ + x21(t) + x22(t)¡

¡
x21(t) + x22(t)

¢2´
+ x1(t):

(4:4:7)

It can be shown that the origin is the only equilibrium point. Putting (4.4.7) into polar coordinates, it
becomes:

_½(t) = ½(¹ + ½2 ¡ ½4);

_µ(t) = 1;
(4:4:8)

from which it follows that:
{ for ¹ > 0 the origin is unstable and there exist a stable limit cycle, which is a circumference with

radius: ½1 = 1+
p
1+4¹
2

;
{ for ¡ 1

4 < ¹ < 0 the origin changes its qualitative behavior from unstable to stable and one more

unstable limit cycle occurs, with radius ½2 = 1¡p1+4¹
2

smaller that ½1; the limit cycle with radius
½1 is still stable;

{ for ¹ < ¡1
4 both limit cycle vanish: there is only asymptotically stable equilibrium point.

The bifurcation diagram is depicted in Fig.4.4.9, where the unstable limit cycle is represented with
empty circles as markers. This is a subcritical Hopf bifurcation and its qualitative behavior is dangerous.
For instance, consider an initial state which has a distance from the origin just a little bit greater that
½ = ¡1=4: for values of parameter ¹ immediately lower than ¡1=4 we have a stable focus, that means
convergence to the origin (see Fig.4.4.10-A); for values of parameter ¹ immediately greater than ¡1=4
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we have the occurrence of a stable limit cycle, with nontrivial radius, that means convergence to the
limit cycle instead of convergence to the equilibrium point (see Fig.4.4.10-B).

Fig. 4.4.8 - Supercritical Hopf bifurcation: vector ¯eld diagrams.

Fig. 4.4.9 - Subcritical Hopf bifurcation diagram.

Fig. 4.4.10 - Subcritical Hopf bifurcation: vector ¯eld diagram.
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5 - STABILITY CRITERIA

5.1 - LIAPUNOV CRITERION

This section is devoted to provide criteria to establish the stability of equilibrium points. Before stating
the main criteria, the following de¯nitions are required.

De¯nition 5.1.1. A function V : IRn 7! IR is
{ positive de¯nite in a neighborhood I½ of a point ¹x if:

V (¹x) = 0 and V (x) > 0 8x 2 I½(¹x)n¹x; (5:1:1)

{ positive semi-de¯nite in a neighborhood I½ of a point ¹x if:

V (¹x) = 0 and V (x) ¸ 0 8x 2 I½(¹x); (5:1:2)

{ negative de¯nite in a neighborhood I½ of a point ¹x if ¡V is positive de¯nite;
{ negative semi-de¯nite in a neighborhood I½ of a point ¹x if ¡V is positive semi-de¯nite.

Theorem 5.1.2 (Liapunov Criterion). Consider a time-invariant nonlinear system like in (2:1:1),
with xe a given equilibrium point. Assume there exist a function V : IRn 7! IR and a neighborhood I½(xe) of
the equilibrium point such that:
i) V admits a continuous derivative;
ii) V is positive de¯nite;

iii-a) _V is negative semi-de¯nite.
Then xe is stable. Moreover, if in I½(xe):

iii-b) _V is negative de¯nite,
then xe is locally asymptotically stable. Finally, if I½(xe) can be extended to the whole state space IRn and
V is radially unbounded, then xe is globally asymptotically stable.

Proof. The proof is provided for second-order systems, that is f : IR2 7! IR2. In this case, it is
easy to verify that if V is continuous and positive de¯nite in some I½(xe), then there exists a neighborhood
I~½(xe) µ I½(xe) such that:

{ any level surface Vk = fx 2 IR2 : V (x) = kg is a closed orbit with xe inside;
{ if k1 < k2, then Vk1 is inside Vk2 .
{ by decreasing k 7! 0, Vk collapses to the trivial closed orbit which consists of the equilibrium point:
V0 = fxeg.

Thus, with no loss of generality, it will be assumed throughout the proof that previous three properties hold
true for the neighborhood I½(xe). Let " > 0. Then, there exists a level surface Vk for some k > 0 such that
Vk is inside I"(xe). Then there exists some ± > 0 such that the neighborhood I±(xe) is inside Vk. Now, let us
choice x0 inside I±(xe). There will be a level surface associated to x0 (named Vh) which will be necessarily
inside Vk, since x0 is inside Vk. According to item iii-a), by increasing the time t, the time derivative of V
is non-positive, that means that V does not increase with time. Thus, the state evolution x(t) = '(t; x0)
associated to V

¡
x(t)

¢
will be related to level surfaces necessarily inside the level surface Vh, which is inside

Vk, which is inside I"(xe). Thus we have stability.
Moreover, if item iii-b) holds true, then, once the initial state x0 is chosen in I±(x0), by increasing the

time t, the time derivative of V is strictly negative, that means that V monotonically decreases with time.
Thus the state evolution x(t) = '(t; x0) associated to V

¡
x(t)

¢
will be related to level surfaces which collapse

to the trivial closed orbit, consisting of the equilibrium point: V0 = fxeg. Thus we have asymptotic stability.
We deal with local asymptotic stability, since the building of the Liapunov function V (¢) is required in a
neighborhood of the equilibrium point. In case of extending I½(xe) to the whole state space, we still need a
further property of radial unboundedness, that means:

lim
kxk7!+1

jV (x)j = +1: (5:1:3)

Otherwise, we could have not-closed level surfaces, with the result of loosing the attractivity property. }
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Remark 5.1.3. As far as the computation of _V (¢), note that:

_V
¡
x(t)

¢
=

dV

dx
¢ dx
dt

=
¡
rxV

¢
¢ f(x) =

nX

i=1

@V

@xi
fi(x); (5:1:4)

that is the gradient of V along the trajectory of the evolution: _V tells us of how V (¢) changes by moving
along the evolution of x(t). ²

Remark 5.1.4. Functions satisfying conditions i-ii) are usually called candidate Liapunov functions.
It has to be stressed that the Liapunov Criterion provides just a su±cient condition. If we are keen enough
to prove that a candidate Liapunov function satis¯es also condition iii), then we have proved stability. But,
in case we are not able to do it, or even if we prove that the candidate function is not a Liapunov function,
then we are still wondering whether the equilibrium point is stable or not. Indeed, there is not a systematic
method to design Liapunov function. ²

Sometimes there are some natural candidates like energy functions in electrical or mechanical systems,
but in any case it is always a matter of trial and error. A wide class of Liapunov candidates are positive
quadratic functions. In general, a quadratic function can be written as:

V (x) =

nX

i=1

nX

j=1

qij(xi ¡ ¹xi)(xj ¡ ¹xj) = (x¡ ¹x)TQ(x¡ ¹x); (5:1:5)

with Q a symmetric matrix. If Q were a non-symmetric matrix, then we could write:

(x¡ ¹x)TQ(x¡ ¹x) = (x¡ ¹x)T (Qs + Qa)(x¡ ¹x) = (x¡ ¹x)TQs(x¡ ¹x) + (x¡ ¹x)TQa(x¡ ¹x); (5:1:6)

with

Qs =
Q + QT

2
; Qa =

Q¡QT

2
: (5:1:7)

Since Qa is an anti-symmetric matrix, it is: (x¡ ¹x)TQa(x¡ ¹x) = 0, 8x; ¹x; therefore any quadratic function
(x¡ ¹x)TQ(x¡ ¹x) is equal to the quadratic function associated to the symmetric part Qs of matrix Q. In the
sequel, positive-de¯niteness of a quadratic function will be referred to positive-de¯niteness of the associated
symmetric matrix. Thus the point is: when a symmetric matrix is positive-de¯nite ? Having the possibility
of computing the eigenvalues, a symmetric matrix is positive-de¯nite/positive-semide¯nite if, and only if, all
its eigenvalues are strictly positive/non-negative. Otherwise, one can use the following criterion.

Theorem 5.1.5 (Sylvester Criterion). A symmetric matrix;

Q =

2

66
4

q11 q12 ¢ ¢ ¢ q1n
q21 q22 ¢ ¢ ¢ q2n
...

...
. . .

...
qn1 qn2 ¢ ¢ ¢ qnn

3

77
5 ; (5:1:8)

is positive-de¯nite if, and only if, all the following determinants are positive:

Mk = det

2

6
4

q11 ¢ ¢ ¢ q1k
...

. . .
...

qk1 ¢ ¢ ¢ qkk

3

7
5 > 0; k = 1; : : : ; n: (5:1:9)

}

Once a symmetric positive matrix Q is chosen, if xe is the equilibrium point to be investigated, the
following quadratic function:

V (x) = (x¡ xe)TQ(x¡ xe) (5:1:10)
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is a typical Liapunov candidate, being positive-de¯nite in the whole state space IRn and also radially un-
bounded. Unfortunately, not always quadratic functions reveal to be Liapunov functions, as it happens for
the following example.

Example 5.1.6 (The prey-predator model). Let us consider the following second order ODE:
(

_x1(t) = ¡ax1(t) + bx1(t)x2(t);

_x2(t) = cx2(t)¡ dx1(t)x2(t);
a; b; c; d > 0: (5:1:11)

x1(t) and x2(t) denote predator and prey concentrations in a closed environment, where predators are
convicted to extinction without preys (with an exponential decay rate equal to a), whilst preys would
inde¯nitely increase without predators (with exponential rate c): assumption of in¯nite food for preys. It is
the easiest version of the well known Lotke-Volterra prey-predator model. It readily appears that the origin
is an equilibrium point which is unstable (it is a saddle node, actually). Indeed, this system has one more
(more interesting!) equilibrium point, as it comes out by solving the algebraic system:

(
¡ ax1 + bx1x2 = 0;

cx2 ¡ dx1x2 = 0;
=)

8
><

>:

¹x1 = c=d;

¹x2 = a=b:

(5:1:12)

After some computations, it comes out that a quadratic Liapunov candidate is not useful to investigate its
stability; thus we will consider the following Liapunov candidate:

V (x) = ®

µ
x1 ¡ ¹x1 ¡ ¹x1 ln

x1
¹x1

¶
+ ¯

µ
x2 ¡ ¹x2 ¡ ¹x2 ln

x2
¹x2

¶
; ®; ¯ > 0: (5:1:13)

As a ¯rst step let us verify that in fact it is a Liapunov candidate: indeed, V (¢) vanishes in (¹x1; ¹x2). Moreover
the equilibrium point is a local minimum, since it also vanishes the gradient rxV :

@V

@x1
= ®

µ
1¡ ¹x1

x1

¶
;

@V

@x2
= ¯

µ
1¡ ¹x2

x2

¶
; (5:1:14)

and makes positive-de¯nite the Hessian matrix:

@2V

@x2
=

2

6
4
®

¹x1
x21

0

0 ¯
¹x2
x22

3

7
5 =) @2V

@x2

¯̄
¯̄
(¹x1;¹x2)

=

2

6
4

®

¹x1
0

0
¯

¹x2

3

7
5 : (5:1:15)

Therefore, there exists a neighborhood I½(¹x) for which V (x) is positive-de¯nite: V (x) is a Liapunov candi-

date. Let us compute _V (x):

_V (x) =
®(x1 ¡ ¹x1)(¡ax1 + bx1x2)

x1
+
¯(x2 ¡ ¹x2)(cx2 ¡ dx1x2)

x2
= ®(x1 ¡ ¹x1)(¡a + bx2) + ¯(x2 ¡ ¹x2)(c¡ dx1)

= ®b(x1 ¡ ¹x1)(x2 ¡ ¹x2)¡ ¯d(x2 ¡ ¹x2)(x1 ¡ ¹x1):

(5:1:16)

By setting ® = ¯d=b we have _V (x) ´ 0, which is clearly a negative semi-de¯nite function, which guarantees
stability. More in details, the proposed Liapunov function is a ¯rst integral of motion, that means whatever
is the initial state x0, we have V

¡
x(t)

¢
´ V (x0) for any t ¸ 0. ²

The Liapunov criterion has the following characterization for time-invariant linear systems.
Theorem 5.1.7. Consider a linear system as the one de¯ned in (3:1:1). The system is asymptotically

stable if, and only if, for any symmetric, positive-de¯nite matrix P 2 IRn£n, the matrix equation (Liapunov
equation):

ATQ + QA = ¡P (5:1:17)

in the unknown Q 2 IRn£n admits a unique, symmetric positive-de¯nite solution.
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Proof. (=)) Let us assume the asymptotic stability. Then, all the eigenvalues of matrix A have strictly
negative real part. De¯ne matrix Q has:

Q =

Z +1

0

eAT tPeAtdt: (5:1:18)

Such an integral is properly de¯ned. Indeed, due to the stability property, according to the spectral de-
composition, matrix A can be decomposed in the ¯nite sum of strictly decreasing exponentials, possibly
multiplied per polynomials, thus allowing a ¯nite sum for the integral. Matrix Q is clearly symmetric, since
matrix P is:

QT =

Z +1

0

¡
eAt
¢T
PT
¡
eAT t

¢T
dt = Q; (5:1:19)

and, moreover, it is positive de¯nite, since matrix P is:

xTQx =

Z +1

0

xT eAT tPeAtxdt =

Z +1

0

¡
eAtx

¢T
P
¡
eAtx

¢
dt: (5:1:20)

Finally, matrix Q is the unique solution of the Liapunov equation. Indeed the Liapunov equation admits a
unique solution. To show such a preliminary item, we will use a Lemma concerning the more generic matrix
equation in the unknown Q:

RQ¡QS = T; R; S; T 2 IRn£n: (5:1:21)

The Lemma states that if R and S have no common eigenvalues, there exists a unique solution. The Liapunov
equation belongs to the above mentioned class of equations, with R = AT and S = ¡A; thus the eigenvalues
of R belong to the strictly negative real half-plane, being the same of the asymptotically stable matrix A,
and the eigenvalues of S belong to the strictly positive real half-plane, being the opposite of matrix A. Thus:
no common eigenvalues implies a unique solution. To show matrix Q is in fact the solution of the Liapunov
equation, we ¯nally need to substitute it in (5.1.17):

AT

µZ +1

0

eAT tPeAtdt

¶
+

µZ +1

0

eAT tPeAtdt

¶
A =

Z +1

0

AT eAT tPeAtdt +

Z +1

0

eAT tPeAtAdt

=

Z +1

0

³
AT eAT tPeAt + eAT tPeAtA

´
dt =

Z +1

0

d

dt

³
eAT tPeAt

´
dt

= lim
t7!+1

eAT tPeAt ¡ lim
t7!0+

eAT tPeAt = ¡P:

(5:1:22)

((=) Let us assume the Liapunov equation admits a symmetric, positive-de¯nite solution. Then, the
following Liapunov candidate is given to evaluate the asymptotic stability of the origin:

V (x) = xTQx: (5:1:23)

By computing the time derivative:

_V (x) = _xTQx + xTQ _x = xTATQx + xTQAx = xT (ATQ + QA)x = ¡xTPx (5:1:24)

which is a quadratic negative-de¯nite function because P is a symmetric positive-de¯nite matrix. }

5.2 - LINEARIZATION CRITERION

We have already dealt with linearization in Section 4.3. In this Section we will show how it does reveal
to be powerful in investigating stability.
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Theorem 5.2.1 (Linearization Criterion). Consider a time-invariant nonlinear system like the one
in (2:1:1) with xe a given equilibrium point. Consider the Jacobian matrix of function f(¢) as de¯ned in
(4:3:2). Then:
i) if all the eigenvalues of the Jacobian matrix have strictly negative real part, the equilibrium point is
locally asymptotically stable;

ii) if there is even just one eigenvalue with strictly positive real part then the equilibrium point is unstable,
regardless to the sign of all the other eigenvalues

iii) if all the eigenvalues have strictly negative real part, except for one (or more) with null real part, then
nothing can be said according to this criterion.

Proof of Item i). Consider the displacement z(t) = x(t) ¡ xe and its dynamic equation obtained in
(4.3.4) and below reported:

_z(t) = J(xe)z(t) + h
¡
z(t)

¢
; with lim

kzk7!0

kh
¡
z(t)

¢
k

kzk = 0: (5:2:1)

If matrix J(xe) is asymptotically stable then, according to Theorem 5.1.7, there exists a unique, symmetric,
positive-de¯nite solution to the Liapunov equation:

JT (xe)Q + QJ(xe) = ¡P (5:2:2)

for any given symmetric, positive-de¯nite matrix P . Let us use Q to consider the following Liapunov
candidate function:

V (x) = (x¡ xe)TQ(x¡ xe) = zTQz; (5:2:3)

from which:

_V (x) = _zTQz + zTQ _z = zT JT (xe)Qz + hT (z)Qz + zTQJ(xe)z + zTQh(z)

= zT
¡
JT (xe)Q + QJ(xe)

¢
z + 2hT (z)Qz = ¡zTPz + 2hT (z)Qz:

(5:2:4)

Now:

lim
kzk7!0

jh(z)Qzj
kzk2 = 0 but lim

kzk7!0

jzTPzj
kzk2 > 0: (5:2:5)

It means there exists a positive radius ½ such that for x 2 I½(xe), it is _V (x) < 0, which implies local
asymptotic stability. }
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