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Goals of Modeling
• simplification: use of models for investigation of very complex 
systems in a systematic manner
•ease in manipulation: separation of subunits and hypothesis 
testing thru use of simulations in place of experimentation 
•assist in formulation of hypotheses and in design of critical 
experiments
•preciseness: move from general, verbal explanation of 
phenomena  to  specific, quantitative one
•organization of inquiry--tends to polarize one’s 
thinking and aid in posing basic questions concerning what one 
does  and does not know for certain about real system
•primary goal=enlightenment--gain better understanding of 
real  system



Iterative modeling process
• Begins with questions raised by observations 

or collected data or hypothesized 
mechanisms

• Mechanism-based relationships in model 
informed and guided by data
– Which variables are important in system?
– Relationships between variables inform nature of 

terms
• Output of model compared with observations

– Are they qualitatively/quantitatively similar?
– Has variance  in observations been reasonably 

modeled? (residual plots)
• Modified model fits to data can be tested for 

statistical improvement (statistically based 
model comparison tests)







Statistically Based Model Comparison Techniques

• Previously, discussed techniques (e.g., residual plots) for
investigating correctness of the assumed statistical model
underlying the estimation (OLS or GLS) procedures used in
inverse problems. To this point have not discussed correctness
issues related to choice of mathematical model.

• Number of ways in which questions related to mathematical
model may arise, e.g, modeling studies [BKa83,BKu89b] can
raise questions as to whether a mathematical model can be
improved by more detail and/or further refinement.
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• Can we improve mathematical model by assuming more detail in
a given mechanism (constant rate vs. time or spatially dependent
rate) – e.g., see [BBDS]–time dependent mortality rates during
sub-lethal damage in insect populations exposed to various levels
of pesticides???

• Or one might question whether an additional mechanism in
model might produce a better fit to data–see [BF1,BF90,BKa83]
for diffusion alone or diffusion plus convection in cat brain
transport in grey vs. white matter considerations.

• Does addition of delays yield improved model?? see [BBH]
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Before continuing, important point must be made: In model
comparison results outlined below, there are really two models being
compared: the mathematical model and the statistical model. If one
embeds the mathematical model in the wrong statistical model (for
example, assuming constant variance when this really isn’t true),
then the mathematical model comparison results using the
techniques presented here will be invalid (i.e., worthless). An
important remark in all this is that one must have the mathematical
model one wants to simplify or improve (e.g., test whether V = 0 or
not in the example below) embedded in the correct statistical model
(determined in large part by the observation process), so that the
comparison actually is only with regard to the mathematical model.
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Motivation:

• Illustrate with mathematical model for diffusion-convection
process–use with experiments to study substance (labelled
sucrose) transport in cat brains (heterogeneous–grey and white
matter) [BKa83].

• Transport of substance in cat’s brains described by PDE
(convection/diffusion model) for change in time and space:

∂u

∂t
+ V ∂u

∂x
= D∂

2u

∂x2
. (1)

• ~q = (D,V) ∈ Q = admissible parameter set: D = diffusion
coefficient, V = bulk velocity of fluid

• Our problem: test whether the parameter V plays a significant
role in the mathematical model.
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• If model (1) represents a diffusion-convection process, seek to
determine whether diffusion alone or diffusion plus convection
best describes transport phenomena represented in cat brain
data sets {yij} for {u(ti, xj ; ~q)}, concentration of labelled sucrose
at times {ti} and location {xj}.

• Wish to test null hypothesis H0 that diffusion alone best
describes data versus alternative hypothesis HA that convection
also needed–take H0 : V = 0 and alternative HA : V 6= 0.
Consequently, restricted parameter set QH ⊂ Q defined by

QH = {~q ∈ Q : V = 0}

important.

• To carry out, need some model comparison tests of analysis of
variance (ANOVA) type [G76] from statistics involving residual
sum of squares (RSS) in least squares problems.
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RSS Based Statistical Tests

In general, we assume an inverse problem with mathematical model
f(t, ~q) and n observations ~Y = {Yj}nj=1. We define an OLS
performance criterion

Jn(~q) = Jn(~Y , ~q) =
1
n

n∑
j=1

[Yj − f(tj , ~q)]2,

where our statistical model again has the form

Yj = f(tj , ~q0) + Ej , j = 1, . . . , n,

with {Ej}nj=1 being independent and identically distributed,
E(Ej) = 0 and constant variance var(Ej) = σ2. As usual ~q0 is the
“true” value of ~q which we assume to exist. As noted above, we use
Q to represent the set of all the admissible parameters ~q and assume
that Q is a compact subset of Euclidean space of Rp with ~q0 ∈ Q.
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Let qn(~Y ) = qn
OLS(~Y ) be the OLS estimator using Jn with

corresponding estimate q̂n = qn
OLS(~y) for a realization ~y = {yj} so

qn(~Y ) = arg min
~q∈Q

Jn(~Y , ~q) and q̂n = arg min
~q∈Q

Jn(~y, ~q).

Remark: In most calculations, one actually uses approximation
fN to f (often numerical solution to ODE or PDE for modeling
dynamical system)–tacitly assume fN converges to f–Also questions
related to approximations of set Q when infinite dimensional (e.g., in
case of function space parameters such as time or spatially dependent
parameters) by finite dimensional discretizations QM–see
[BKu89b,BF90] for extensive discussions on convergences fN → f

and QM → Q–ignore these issues here, keeping in mind these
approximations will also be of importance in the methodology
discussed below in most practical uses.
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In many instances, interested in using data to address whether or not
the “true” parameter ~q0 can be found in a subset QH ⊂ Q, assumed
here to be defined by

QH = {~q ∈ Q|H~q = c}, (2)

H is r × p matrix of full rank, c a known constant vector. Test null
hypothesis H0: ~q0 ∈ QH . Define

qn
H(~Y ) = arg min

~q∈QH

Jn(~Y , ~q) and q̂n
H = arg min

~q∈QH

Jn(~y, ~q)

and observe that Jn(~Y , q̂n
H) ≥ Jn(~Y , q̂n). Define related non-negative

test statistics and their realizations, respectively, by

Tn(~Y ) = n(Jn(~Y , qn
H)− Jn(~Y , qn)) and T̂n = Tn(~y).
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One can establish asymptotic convergence results for the test
statistics Tn(~Y )–given in detail in [BF90]. These results can, in turn,
be used to establish a fundamental result about more useful statistics
for model comparison. We define these statistics by

Un(~Y ) =
Tn(~Y )

Jn(~Y , qn)
, (3)

with corresponding realizations Ûn = Un(~y). We then have
asymptotic result that is the basis of ANOVA–type tests.
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Under reasonable assumptions (very similar to those required in the
asymptotic sampling distribution theory discussed in previous
sections (see [BF90,BKu89b, F88, SeWi]) involving regularity and
the manner in which samples are taken, one can prove a number of
convergence results including:

(i) The estimators qn converge to ~q0 with probability one as n→∞ ;

(ii) If H0 is true, Un converges in distribution to U(r) as n→∞
where U ∼ χ2(r), a χ2 distribution with r degrees of freedom,
where r is the number of constraints specified by the matrix H.
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• Recall that H is the r × p matrix of full rank defining QH and
that random variables converge in distribution if their
corresponding cumulative distribution functions converge point
wise at all points of continuity of the limit cdf.

• An example of the χ2 density is depicted in Figure 1 where the
density for χ2(4) (χ2 with r = 4 degrees of freedom) is graphed.

12



τ

p(u)

α

Figure 1: Example of U ∼ χ2(4) density.

In this figure two parameters (τ, α) of interest are shown. For a given
value τ , the value α is simply the probability that the random
variable U will take on a value greater than α. That is,
P (U > τ) = α where in hypothesis testing, α is the significance level
and τ is the threshold.
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We wish to use this distribution to test the null hypothesis, H0,
which we approximate by Un ∼ χ2(r). If the test statistic, Ûn > τ ,
then we reject H0 as false with confidence level (1− α)100%.
Otherwise, we do not reject H0 as true. We emphasize that
care should be taken in stating conclusions: we either reject or do
not reject H0 at the specified level of confidence. For the cat brain
problem, we use a χ2(1) table, which can be found in any elementary
statistics text or online and is given here for illustrative purposes, see
Table 1.
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Table 1: χ2(1) values.

α τ confidence

.25 1.32 75%

.1 2.71 90%

.05 3.84 95%

.01 6.63 99%

.001 10.83 99.9%
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P-Values

The minimum value α∗ of α at which H0 can be rejected is called the
p-value. Thus, the smaller the p-value, the stronger the evidence in
the data in support of rejecting the null hypothesis and including the
term in the model, i.e., the more likely the term should be in the
model. We implement this as follows: Once we compute Ûn = τ̄ , then
p = α∗ is the value that corresponds to τ̄ on a χ2 graph and so we
reject the null hypothesis at any confidence level c, such that
c < 1− α∗. For example, if for a computed τ̄ we find p = α∗ = .0182,
then we would reject H0 at confidence level (1− α∗)100% = 98.18%
or lower. For more information, the reader can consult ANOVA
discussions in any good statistics book.
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Alternative statement

To test the null hypothesis H0, we choose a significance level α and
use χ2 tables to obtain the corresponding threshold τ = τ(α) so that
P (χ2(r) > τ) = α. We next compute Ûn = τ and compare it to τ . If
Ûn > τ , then we reject H0 as false; otherwise, we do not reject the
null hypothesis H0.
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Application: Cat-Brain Diffusion/Convection

Problem

We summarize use of the model comparison techniques outlined
above by returning to the cat brain example discussed in detail in
[BKa83,BKu89b]. There were 3 sets of experimental data examined,
under the null-hypothesis H0 : V = 0. For Data Set 1, we found after
carrying out the inverse problems over Q and QH , respectively,

Jn(q̂n) = 106.15 and Jn(q̂n
H) = 180.1.

In this case Ûn = 5.579 (note that n = 8 6=∞), for which
p = α∗ = .0182. Thus, we reject H0 in this case at any confidence
level less than 98.18%. Thus, we should reject that V = 0, which
suggests convection is important in describing this data set.
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For Data Set 2, we found

Jn(q̂n) = 14.68 and Jn(q̂n
H) = 15.35,

and thus, in this case, we have Ûn = .365, which implies we do not
reject H0 with high degrees of confidence (p-value very high). This
suggests V = 0, which is completely opposite to the findings for Data
Set 1.

For the final set (Data Set 3) we found

Jn(q̂n) = 7.8 and Jn(q̂n
H) = 146.71,

which yields in this case, Ûn = 15.28. This, as in the case of the first
data set, suggests (with p < .001) that V 6= 0 is important in
modeling the data.
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The difference in conclusions between the first and last sets and that
of the second set is interesting and perhaps at first puzzling.
However, when discussed with the doctors who provided the data, it
was discovered that the first and last set were taken from the white
matter of the brain, while the other was taken from the grey matter.
This later finding was consistent with observed microscopic tests on
the various matter (micro channels in white matter that promote
convective “flow”). Thus, it can be suggested with a reasonably high
degree of confidence, that white matter exhibits convective transport,
while grey matter does not.
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