QUALITATIVE BEHAVIOR OF SOLUTIONS: Equilibrium Points and Stability Linear Systems

Pasquale Palumbo

IASI-CNR Viale Manzoni 30, 00185 Roma, Italy

Ľ4 Istituto di Analisi dei Sistemi ed Informatica

- CONSIGLIO NAZIONALE DELLE RICERCHE

Summer School on Parameter Estimation in Physiological Models
Lipari, September 2009

Time-invariant, nonlinear systems (ODE models):

$$
\dot{x}(t)=f(x(t)), \quad x(0)=x_{0}, \quad x(t) \in \mathbb{R}^{n}, \quad f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}
$$

- The unique solution to the Chauchy problem will be denoted by:

$$
x(t)=\varphi\left(t, x_{0}\right)
$$

where $\varphi: \mathbb{R}^{+} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is the state-transition map.

- x_{0} is the initial state: it univocally determines the evolution of the state variables x
- Equilibrium points are such that no motion occurs if they are chosen as initial state:

Time-invariant, nonlinear systems (ODE models):

$$
\dot{x}(t)=f(x(t)), \quad x(0)=x_{0}, \quad x(t) \in \mathbb{R}^{n}, \quad f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}
$$

- The unique solution to the Chauchy problem will be denoted by:

$$
x(t)=\varphi\left(t, x_{0}\right)
$$

where $\varphi: \mathbb{R}^{+} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is the state-transition map.

- x_{0} is the initial state: it univocally determines the evolution of the state variables x
- Equilibrium points are such that no motion occurs if they are chosen as initial state:

$$
\varphi\left(t, x_{e}\right)=x_{e}, \quad \forall t \geq 0
$$

Time-invariant, nonlinear systems (ODE models):

$$
\dot{x}(t)=f(x(t)), \quad x(0)=x_{0}, \quad x(t) \in \mathbb{R}^{n}, \quad f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n} .
$$

- By definition, the equilibrium points vanish the time-derivative:

$$
f\left(x_{e}\right)=0
$$

- In case of a generic nonlinear system we can have:
- no equilibrium points at all: $f(x)=0$ has no solutions
- a unique equilibrium point: $f(x)=0$ admits a unique solution
- isolated equilibrium points: $f(x)=0$ admits a discrete number of solutions
- infinite equilibrium points: $f(x)=0$ admits infinite solutions
- In case of linear systems, $f(x)=A x$, we can have:
- the origin is always an equilibrium point
if $\operatorname{rank}(A)=n$, the origin is the unique equilibrium point
- if $\operatorname{rank}(A)=r<n$, there exist ∞^{n-r} (uncountable) equilibrium points
there can never be isolated equilibrium points, unless the origin

Time-invariant, nonlinear systems (ODE models):

$$
\dot{x}(t)=f(x(t)), \quad x(0)=x_{0}, \quad x(t) \in \mathbb{R}^{n}, \quad f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n} .
$$

- By definition, the equilibrium points vanish the time-derivative:

$$
f\left(x_{e}\right)=0
$$

- In case of a generic nonlinear system we can have:
- no equilibrium points at all: $f(x)=0$ has no solutions
- a unique equilibrium point: $f(x)=0$ admits a unique solution
- isolated equilibrium points: $f(x)=0$ admits a discrete number of solutions
- infinite equilibrium points: $f(x)=0$ admits infinite solutions
- In case of linear systems, $f(x)=A x$, we can have:
- the origin is always an equilibrium point
- if $\operatorname{rank}(A)=n$, the origin is the unique equilibrium point
- if $\operatorname{rank}(A)=r<n$, there exist ∞^{n-r} (uncountable) equilibrium points
- there can never be isolated equilibrium points, unless the origin

Stability

Time-invariant, nonlinear systems (ODE models):

$$
\dot{x}(t)=f(x(t)), \quad x(0)=x_{0}, \quad x(t) \in \mathbb{R}^{n}, \quad f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}
$$

- Stability. The equilibrium point x_{e} is stable if:

$$
\forall \varepsilon>0, \quad \exists \delta>0: \quad\left\|x_{0}-x_{e}\right\|<\delta \quad \Longrightarrow \quad\left\|x(t)-x_{e}\right\|<\varepsilon, \quad \forall t \geq 0
$$

In case of linear systems, $f(x)=A x$, the stability of a given equilibrium point implies and is implied by the stability of the origin

- Attractivity. The equilibrium point x_{e} is:
locally attractive if: $\quad \exists \eta>0: \quad\left\|x_{0}-x_{\epsilon}\right\|<\eta \quad \Longrightarrow \quad\left\|x(t)-x_{\theta}\right\| \mapsto 0$ globally attractive if:

Attractivity can occur only if the equilibrium point is isolated
In case of linear svstems, $f(x)=A x$, only the oriain can be attractive

Stability

Time-invariant, nonlinear systems (ODE models):

$$
\dot{x}(t)=f(x(t)), \quad x(0)=x_{0}, \quad x(t) \in \mathbb{R}^{n}, \quad f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}
$$

- Stability. The equilibrium point x_{e} is stable if:

$$
\forall \varepsilon>0, \quad \exists \delta>0: \quad\left\|x_{0}-x_{e}\right\|<\delta \quad \Longrightarrow \quad\left\|x(t)-x_{e}\right\|<\varepsilon, \quad \forall t \geq 0
$$

In case of linear systems, $f(x)=A x$, the stability of a given equilibrium point implies and is implied by the stability of the origin

- Attractivity. The equilibrium point x_{e} is:
- locally attractive if: $\quad \exists \eta>0: \quad\left\|x_{0}-x_{e}\right\|<\eta \quad \Longrightarrow \quad\left\|x(t)-x_{e}\right\| \mapsto 0$
- globally attractive if: $\quad \forall x_{0} \in \mathbb{R}^{n}, \quad$ it is: $\quad\left\|x(t)-x_{e}\right\| \mapsto 0$

Attractivity can occur only if the equilibrium point is isolated

In case of linear systems, $f(x)=A x$, only the origin can be attractive

Stability

Time-invariant, nonlinear systems (ODE models):

$$
\dot{x}(t)=f(x(t)), \quad x(0)=x_{0}, \quad x(t) \in \mathbb{R}^{n}, \quad f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}
$$

- Asymptotic Stability. The equilibrium point x_{e} is locally/globally asymptotically stable if it is stable and locally/globally attractive

Global asymptotic stability can occur only when the equilibrium point is unique

- Exponential Stability. The equilibrium point x_{e} is exponentially stable if:

In case of linear systems, $f(x)=A x$, asymptotical stability is always global and exponential

Stability

Time-invariant, nonlinear systems (ODE models):

$$
\dot{x}(t)=f(x(t)), \quad x(0)=x_{0}, \quad x(t) \in \mathbb{R}^{n}, \quad f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}
$$

- Asymptotic Stability. The equilibrium point x_{e} is locally/globally asymptotically stable if it is stable and locally/globally attractive

Global asymptotic stability can occur only when the equilibrium point is unique

- Exponential Stability. The equilibrium point x_{e} is exponentially stable if:

$$
\exists \alpha>0: \quad \forall \varepsilon>0, \quad \exists \delta>0: \quad\left\|x_{0}-x_{e}\right\|<\delta \quad \Longrightarrow \quad\left\|x(t)-x_{e}\right\|<\varepsilon \cdot e^{-\alpha t}
$$

In case of linear systems, $f(x)=A x$, asymptotical stability is always global and exponential

Stability: example of attractivity without stability

Time-invariant, nonlinear systems (ODE models):

$$
\dot{x}_{1}=\frac{x_{1}^{2}\left(x_{2}-x_{1}\right)+x_{2}^{5}}{\left(x_{1}^{2}+x_{2}^{2}\right)\left(1+\left(x_{1}^{2}+x_{2}^{2}\right)\right)} \quad \dot{x}_{2}=\frac{x_{2}^{2}\left(x_{2}-2 x_{1}\right)}{\left(x_{1}^{2}+x_{2}^{2}\right)\left(1+\left(x_{1}^{2}+x_{2}^{2}\right)\right)}
$$

Time-invariant, linear systems (ODE models):

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0} \quad x(t) \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n \times n}
$$

- The solution is a linear transformation of the initial state:

$$
x(t)=\Phi(t) x_{0} \quad \Phi(t) \quad \text { is the state transition matrix }
$$

- $\Phi(t)$ obeys the following matricial Chauchy problem

$$
\dot{\Phi}(t)=A \Phi(t), \quad \Phi(0)=I_{n}
$$

The solution is the exponential matrix:

Time-invariant, linear systems (ODE models):

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0} \quad x(t) \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n \times n}
$$

- The solution is a linear transformation of the initial state:

$$
x(t)=\Phi(t) x_{0} \quad \Phi(t) \quad \text { is the state transition matrix }
$$

- $\Phi(t)$ obeys the following matricial Chauchy problem

$$
\dot{\Phi}(t)=A \Phi(t), \quad \Phi(0)=I_{n}
$$

The solution is the exponential matrix:

Time-invariant, linear systems (ODE models):

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0} \quad x(t) \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n \times n}
$$

- The solution is a linear transformation of the initial state:

$$
x(t)=\Phi(t) x_{0} \quad \Phi(t) \quad \text { is the state transition matrix }
$$

- $\Phi(t)$ obeys the following matricial Chauchy problem

$$
\dot{\Phi}(t)=A \Phi(t), \quad \Phi(0)=I_{n}
$$

The solution is the exponential matrix:

$$
\Phi(t)=e^{A t}=I+A t+\frac{A^{2} t^{2}}{2}+\cdots=\sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!}
$$

Linear systems evolution

Time-invariant, linear systems (ODE models):

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0} \quad x(t) \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n \times n}
$$

Explicit solution to: $\quad \dot{\Phi}(t)=A \Phi(t), \quad \Phi(0)=I_{n}$

$$
\Phi(t)=e^{A t}=I+A t+\frac{A^{2} t^{2}}{2}+\cdots=\sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!}
$$

- $\left.e^{A t}\right|_{t=0}=\left[I_{n}+A t+\frac{A^{2} t^{2}}{2}+\cdots\right]_{t=0}=I_{n}$

- Further property (semigroup):
$\Phi\left(t_{1}+t_{2}\right)=\Phi\left(t_{1}\right) \cdot \Phi\left(t_{2}\right)$

Linear systems evolution

Time-invariant, linear systems (ODE models):

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0} \quad x(t) \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n \times n}
$$

Explicit solution to: $\quad \dot{\Phi}(t)=A \Phi(t), \quad \Phi(0)=I_{n}$

$$
\Phi(t)=e^{A t}=I+A t+\frac{A^{2} t^{2}}{2}+\cdots=\sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!}
$$

- $\left.e^{A t}\right|_{t=0}=\left[I_{n}+A t+\frac{A^{2} t^{2}}{2}+\cdots\right]_{t=0}=I_{n}$
- $\frac{d}{d t}\left[e^{A t}\right]=\frac{d}{d t}\left[\sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!}\right]=\sum_{k=1}^{\infty} \frac{A^{k} t^{k-1}}{(k-1)!}=A \sum_{k=1}^{\infty} \frac{A^{k-1} t^{k-1}}{(k-1)!}=A e^{A t}$
- Further property (semigroup):
$\Phi\left(t_{1}+t_{2}\right)=\Phi\left(t_{1}\right) \cdot \phi\left(t_{2}\right)$

Linear systems evolution

Time-invariant, linear systems (ODE models):

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0} \quad x(t) \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n \times n}
$$

Explicit solution to: $\quad \dot{\Phi}(t)=A \Phi(t), \quad \Phi(0)=I_{n}$

$$
\Phi(t)=e^{A t}=I+A t+\frac{A^{2} t^{2}}{2}+\cdots=\sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!}
$$

- $\left.e^{A t}\right|_{t=0}=\left[I_{n}+A t+\frac{A^{2} t^{2}}{2}+\cdots\right]_{t=0}=I_{n}$
- $\frac{d}{d t}\left[e^{A t}\right]=\frac{d}{d t}\left[\sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!}\right]=\sum_{k=1}^{\infty} \frac{A^{k} t^{k-1}}{(k-1)!}=A \sum_{k=1}^{\infty} \frac{A^{k-1} t^{k-1}}{(k-1)!}=A e^{A t}$
- Further property (semigroup):

$$
\Phi\left(t_{1}+t_{2}\right)=\Phi\left(t_{1}\right) \cdot \Phi\left(t_{2}\right)
$$

Linear systems evolution: spectral decomposition

Time-invariant, linear systems (ODE models):

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0} \quad x(t) \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n \times n}
$$

- Spectrum of matrix $A:\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \quad n$ distinct eigenvalues
- The associated eigenvectors $\left\{u_{1}, \ldots, u_{n}\right\}$ are a basis for the state space:

$$
U=\left[u_{1} \cdots u_{n}\right] \quad \Longrightarrow \quad A=U \wedge U^{-1} \quad \Lambda=\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]
$$

- Spectral decomposition of matrix A :

Time-invariant, linear systems (ODE models):

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0} \quad x(t) \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n \times n}
$$

- Spectrum of matrix A : $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \quad n$ distinct eigenvalues
- The associated eigenvectors $\left\{u_{1}, \ldots, u_{n}\right\}$ are a basis for the state space:

$$
U=\left[u_{1} \cdots u_{n}\right] \quad \Longrightarrow \quad A=U \wedge U^{-1} \quad \Lambda=\left[\begin{array}{lll}
\lambda_{1} & & O \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]
$$

- Spectral decomposition of matrix A :

$$
A=U \wedge V=\sum_{i=1}^{n} \lambda_{i} u_{i} v_{i}^{T}, \quad v_{i}^{T} \quad \text { are the rows of matrix } U^{-1}
$$

