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PROBABILITY REVIEW

• probability and statistics essential mathematical tool in
development of inverse problem formulations and

• subsequent analysis as well as for approaches to statistical
hypothesis testing

• here a few definitions and basic concepts in the theory of
probability and statistics that are essential for the understanding
of estimators, confidence intervals and hypothesis testing
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Probability

• denote events by capital letters –the probability of event A is
P (A).

• set of all possible outcomes, the sample space denoted by S.

• Example: experiment of rolling of a die in which there are six
possible outcomes–sample space is

S = {1, 2, 3, 4, 5, 6} (1)

and an event A might be defined as

A = {1, 5}, (2)

which consists of the outcomes 1 and 5.
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Associated with event A contained in S is its probability P (A). In
case the sample space S is discrete (finite or countably infinite),
probability satisfies the following postulates:

(i) P (A) ≥ 0,

(ii) P (S) = 1,

(iii) If A1, A2, A3, . . . , is a finite or an infinite sequence of disjoint
subsets of S, then

P (A1 ∪A2 ∪A3 ∪ · · · ) = P (A1) + P (A2) + P (A3) + · · · . (3)
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In our fair experiment of the rolling of a die, each possible outcome
has probability 1

6 . The event A as defined by (2) consists of two
disjoint subevents, and hence P (A) = 2

6 = 1
3 . Using the three

postulates of probability, a number of immediate consequences can
also be derived which have important applications. For example,
probabilities cannot exceed 1 (P (A) ≤ 1 for any event A), the empty
set ∅ has probability 0 (P (∅) = 0), and the probability that an event
will occur and that it will not occur always add up to 1
(P (A) + P (Ā) = 1 where Ā denotes the complement of the event A
which consists of all sample points in S that are not in A). If
P (A) = 1, then we say that “the event A occurs with probability 1 or
almost surely (a.s.).”
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Now perform two experiments and consider outcomes. For example,
the two experiments may be two separate tosses of a single die or a
single toss of two dice. The sample space in this case consists of 36
pairs (i, j), where i, j = 1, 2, . . . , 6. Note each point in sample space
has probability 1

36 . Consider the probability of joint events, such as
{i = 2, j = odd}. Denote the possible outcomes of one experiment by
Ai, i = 1, 2, . . . , n, and by Bj , j = 1, 2, . . . ,m the possible outcomes
of the second experiment. The combined experiment has possible
joint outcomes (Ai, Bj), where i = 1, 2, . . . , n and j = 1, 2, . . . ,m.
The joint probability P (Ai, Bj) satisfies 0 ≤ P (Ai, Bj) ≤ 1.If
outcomes Bj for j = 1, 2, . . . ,m are mutually exclusive (i.e.,
Bi
⋂
Bj = ∅, i 6= j), then

m∑
j=1

P (Ai, Bj) = P (Ai). (4)
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Furthermore, if all the outcomes of the two experiments are mutually
exclusive, then

n∑
i=1

m∑
j=1

P (Ai, Bj) = 1. (5)

The generalization of the above concept to more than two
experiments follows in a straightforward manner.

Next, we consider a joint event with probability P (A,B). Assuming
that event A has occurred, we wish to determine the probability of
the event B. This is called the conditional probability of the event B
given the occurrence of the event A and is given by

P (B|A) =
P (A,B)
P (A)

, (6)

where P (A) > 0. A very useful relationship for conditional
probabilities, which is known as Bayes’ theorem, states that if Ai,
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where i = 1, 2, . . . , n, are mutually exclusive events such that
n⋃
i=1

Ai = S (7)

and B is an arbitrary event with P (B) > 0, then

P (Ai|B) =
P (Ai, B)
P (B)

=
P (B|Ai)P (Ai)∑n
l=1 P (B|Al)P (Al)

.
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Random Variables

In most applications of probability theory, we are interested only in a
particular aspect of the outcome of an experiment. For example, in
the experiment of the rolling of a pair of dice, we are generally
interested only in the total and not in the outcome for each die. In
the language of probability and statistics, the total which we obtain
with a pair of dice is called a random variable. More formally, the
random variable X(A) represents the functional relationship between
a random event A and a real number. For example, if we flip a coin
the possible outcomes are heads, H, or tails, T . We may define a
random variable X(A) by

X(A) =

 1, A = H,

−1, A = T.
(8)
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We note that the random variable may be continuous or discrete.
Associated with a random variable X, we consider the event X ≤ x,
where −∞ < x <∞. The probability of this event is defined by

F (x) = P (X ≤ x), (9)

where the function F (x) is called the probability distribution function
of the random variable X. It is also called the cumulative distribution
function

or (cdf). The distribution function is right continuous and has the
following properties:

(i) 0 ≤ F (x) ≤ 1,

(ii) F (x1) ≤ F (x2) if x1 ≤ x2,

(iii) F (−∞) = 0,

(iv) F (∞) = 1.
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The derivative p(x) (when it exists) of the distribution function F (x)
given by

p(x) =
dF (x)
dx

(10)

is called the probability density function or (pdf). The name “density
function” comes from the fact that the probability of the event
x1 ≤ X ≤ x2 is given by

P (x1 ≤ X ≤ x2) = P (X ≤ x2)− P (X ≤ x1)

= F (x2)− F (x1)

=
∫ x2

x1

p(x) dx.
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The probability density function p(x) satisfies the following
properties:

(i) p(x) ≥ 0,

(ii)
∫∞
−∞ p(x) dx = F (∞)− F (−∞) = 1.

Moreover, it is common to denote random variables by capital letters
X,Y, Z, etc., while one denotes particular realizations by the
corresponding lower case letters x, y, z, etc.
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Statistical Averages of Random Variables

Of particular importance in the characterization of the outcomes of
experiments and random variables are the concepts of first and
second moments of a single random variable and the joint moments
(correlation and covariance) between any pair of random variables in
a multi-dimensional set of random variables.

We begin the discussion of these statistical averages by considering
first a single random variable X and its pdf p(x). The mean value µ
or expected value of the random variable X is defined by

µ = E(X) =
∫ ∞
−∞

xp(x) dx, (11)

where E(·) is called the expected value operator (or statistical
averaging operator). This is the first moment of the random variable
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X. The nth moment of a probability distribution of a random
variable X is defined as

E(Xn) =
∫ ∞
−∞

xnp(x) dx. (12)

We can also define the central moments, which are the moments of
the difference between X and µ. The second central moment, which
is called the variance of X, is defined by

σ2 = var(X) = E[(X − µ)2] =
∫ ∞
−∞

(x− µ)2p(x) dx. (13)

The square root σ of the variance of X is called the standard
deviation of X. Variance is a measure of the “randomness” of the
random variable X. It is related to the first and second moments
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through the relationship

σ2 = E(X2 − 2µX + µ2)

= E(X2)− 2µE(X) + µ2

= E(X2)− µ2.

In the important case of multi-dimensional or Rp–valued vector
random variables X = (X1, X2, . . . , Xp)T , we can define joint
moments of any order. However, the joint moments that are most
useful in practical applications are the joint moments defined by

E(XiXj) =
∫ ∞
−∞

∫ ∞
−∞

xixjp(xi, xj) dxidxj , (14)

which are called the correlation (NOT to be confused with
correlation coefficients) between the random variables Xi and Xj .
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Here, p(xi, xj) are the marginal densities defined by

p(xi, xj)

=
∫ ∞
−∞
· · ·
∫ ∞
−∞

p(x1, . . . , xp)dx1 . . . dxi−1dxi+1 . . . dxj−1dxj+1 . . . dxp.

Also of particular importance is the joint central moment, which is
also called the covariance of Xi and Xj and is given by

µij ≡ E[(Xi − µi)(Xj − µj)]

=
∫ ∞
−∞

∫ ∞
−∞

(xi − µi)(xj − µj)p(xi, xj) dxidxj

=
∫ ∞
−∞

∫ ∞
−∞

xixjp(xi, xj) dxidxj − µiµj

= E(XiXj)− µiµj . (15)

The (p× p) matrix with elements µij is called the covariance matrix
of the random variable X = (X1, . . . , Xp). Two random variables are
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said to be uncorrelated if E(XiXj) = E(Xi)E(Xj) = µiµj . In that
case, the covariance µij = 0. We also note that when Xi and Xj are
statistically independent, they are uncorrelated. The reverse is,
however, not true. That is, if Xi and Xj are uncorrelated, they
are not necessarily statistically independent.
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Special Probability Distributions

We say a continuous random variable has a certain distribution (e.g.,
Gaussian distribution) when it has the corresponding probability
density. We review in this section several frequently encountered
random variables, their pdf’s, and their moments.
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Uniform distribution.

The pdf of a uniformly distributed random variable X is given by

p(x) =

 1/(b− a), a ≤ x ≤ b,
0, otherwise.

(16)

This is also called a rectangular distribution and its graph is depicted
in Figure 1. The first two moments of X are

E(X) = µ =
a+ b

2

E(X2) =
a2 + b2 + ab

3
and the variance is

var(X) = σ2 =
(a− b)2

12
. (17)
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a b
x

p(x)

   1

(b-a)

Figure 1: Plot of the pdf p(x) of a uniform distribution.
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Gaussian (normal) distribution.

The pdf of a Gaussian or normally distributed random variable is
given by

p(x) =
1√
2πσ

e−(x−µ)2/(2σ2), (18)

where µ is the mean and σ2 is the variance of the random variable.
The pdf of a Gaussian distributed random variable is illustrated in
Figure 2. The probability distribution function F (x) has the form

F (x) =
∫ x

−∞
p(s) ds

=
1√
2πσ

∫ x

−∞
e−(s−µ)2/(2σ2) ds

=
1
2

[
1 + erf(

x− µ√
2σ

)
]
, (19)
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where erf denotes the error function and is given by

erf(x) =
2
π

∫ x

0

e−s
2
ds. (20)

0 μ x

p(x)

√(2π)σ

1

Figure 2: The pdf graph of a Gaussian distributed random variable.
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The kth central moment of the random variable X is given by the
expression

E[(X − µ)k] ≡ mk =

 1 · 3 · · · (k − 1)σk, k = even,

0, k = odd
(21)

and the kth moments are given in terms of the central moments by

E(Xk) =
k∑
i=0

 k

i

µimk−i. (22)

Finally, if X is a random variable distributed normally with mean µ

and variance σ2, this is commonly denoted by X ∼ N (µ, σ2).
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Log-normal distribution.

A widely employed model for biological (and other) phenomena
where the random variable is only allowed positive values is the
so-called log normal distribution. If logX ∼ N (µ, σ2), then X has a
lognormal distribution with density given by

p(x) =
1√
2πσ

1
x

exp
{
− (log x− µ)2

2σ2

}
, 0 < x <∞, (23)

with mean and variance

E(X) = eµ+σ2/2, (24)

var(X) = (eσ
2
− 1)e2µ+σ2

. (25)

We observe that var(X) is proportional to {E(X)}2 so that the
constant coefficient of variation (CV) defined by

√
var(X)/E(X),

which represents the “noise-to-signal” ratio, does not depend on
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E(X). The density for this random variable is skewed (asymmetric)
with a “long right tail” but becomes more and more symmetric as
σ → 0.
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Multivariate normal distribution.

One of the most often encountered multivariate random variables is
(as we shall see below in discussing asymptotic theory for confidence
intervals) also incredibly important in statistical modeling and
inference and is known as the multivariate normal or multinormal
random variable. A random vector X = (X1, . . . , Xp)T has a
multivariate (p-variate) normal distribution (denoted by
X ∼ Np(µ,Σ)) if αTX is normal for all α ∈ Rp ; its density is given
by

p(x) = (2π)−p/2|Σ|−1/2 exp{−(x− µ)TΣ−1(x− µ)/2},

for x = (x1, . . . , xp)T ∈ Rp where the mean is

µ = E(X) = (µ1, . . . , µp)T = {E(X1), . . . , E(Xp)}T
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and the covariance matrix is

Σ = E{(x− µ)(x− µ)T }.

The (p× p) covariance matrix Σ is such that

Σjj = var(Xj), Σjk = Σkj = cov(Xj , Xk).

Finally, we note that the marginal probability densities are univariate

normal.
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Chi-square distribution.

The chi-square distribution is important in statistical analysis of
variance (ANOVA) and other statistical procedures [7, 10] based on
normally distributed random variables. In particular, a chi-square
distributed random variable is related to the normally distributed
random variable through a transformation. That is, if X is a
normally distributed random variable, then Y = X2 has a chi-square
distribution. There are two types of chi-square distributions. A
central chi-square distribution is obtained when X has zero mean;
otherwise, we call it a non-central chi-square distribution.

First, let us consider the central chi-square distribution. In this case,
the pdf of Y has the form

p(y) =
1√

2πyσ
e−y/(2σ

2), (26)
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where y > 0. The corresponding probability distribution function
F (y) is given by

F (y) =
1√
2πσ

∫ y

0

1√
s
e−s/(2σ

2) ds. (27)

More generally, suppose that the random variable Y is defined as

Y =
k∑
i=1

X2
i , (28)

where Xi, i = 1, 2, . . . , k, are statistically independent and identically
distributed normal random variables with zero mean and variance σ2.
The pdf is then given by

p(y) =
1

σk2k/2Γ(k/2)
yk/2−1e−y/(2σ

2), y > 0, (29)

where Γ(p) is the gamma function defined as Γ(1/2) =
√
π,
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Γ(3/2) =
√
π/2, and for ν > 0,

Γ(ν) =
∫ ∞

0

xν−1e−x dx. (30)

By integration by parts, it can be shown that

Γ(ν) = (ν − 1)Γ(ν − 1). (31)

For positive and integer ν we obtain

Γ(ν) = (ν − 1)!. (32)

This pdf, which is a generalization of (26), is called a chi-square (or
gamma) pdf with k degrees of freedom (denoted Y ∼ χ2(k) or
Y ∼ χ2

k). Its graphs for several values of k are depicted in Figure 3.
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The first two moments of Y are

E(Y ) = kσ2

E(Y 2) = 2kσ4 + k2σ4

and its variance is

var(Y ) = 2kσ4. (33)
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Figure 3: The pdf graph of a chi-square distribution for various degrees
of freedom k. 32



We now turn to the non-central chi-square distribution. Here, let Xi,
i = 1, 2, . . . , k, be Gaussian distributed random variables with means
µi and identical variances equal to σ2. The random variable
Y =

∑k
i X

2
i has the pdf

p(y) =
1

2σ2

(y
s

)(k−2)/4

e−(s2+y)/(2σ2)Ik/2−1

(√
ys

σ2

)
, y > 0,

(34)
where the parameter s2, which is called the noncentrality parameter

of the distribution, is given by

s2 =
k∑
i=1

µ2
i .

The function Iα(x) is the αth-order modified Bessel function of the
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first kind and is given by

Iα(x) =
∞∑
j=0

(x/2)α+2j

j! Γ(α+ j + 1)
, x ≥ 0. (35)

The pdf function given by the expression (34) is called the
non-central chi-square pdf with k degrees of freedom.

Finally, the first two moments of the non-central chi-square
distribution random variable are

E(Y ) = kσ2 + s2

E(Y 2) = 2kσ4 + 4σ2s2 + (kσ2 + s2)2

and its variance is
var(Y ) = 2kσ4 + 4σ2s2.
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Rayleigh distribution.

Another frequently encountered random variable which is closely
related to the central chi-square distribution is the Rayleigh
distribution . To begin the discussion, let us consider a central
chi-square distribution with two degrees of freedom, Y = X2

1 +X2
2 ,

where Xi are zero mean statistically independent Gaussian random
variables with identical variances σ2. The pdf of Y is given by

p(y) =
1

2σ2
e−y/(2σ

2). (36)

Define a new variable Z as

Z =
√
X2

1 +X2
2 =
√
Y .
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Then, after a change of variables in equation (36), we obtain the pdf
of Z as

p(z) =
z

σ2
e−z

2/(2σ2), z ≥ 0

which is known as the pdf of a Rayleigh distributed random variable.
The corresponding probability distribution function is given by

F (z) =
∫ z

0

s

σ2
e−s

2/(2σ2) ds

= 1− e−z
2/(2σ2), z ≥ 0.

The moments of Z are

E(Zk) = (2σ2)(k/2)Γ(1 +
k

2
)

and the variance is given by

var(Z) = (2− π

2
)σ2.
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Student’s t distribution.

If U ∼ N (0, 1) and V ∼ χ2(k) are independent, then X = U/
√
V/k

has a t distribution with k degrees of freedom (denoted by X ∼ tk)
and density function

p(x) =
Γ{(k + 1)/2}

Γ(k/2)
1√
kπ

1
(1 + x2/k)(k+1)/2

, −∞ < x <∞.

The mean and variance are given by

E(X) = 0 if k > 1 (otherwise undefined)

and

var(X) = k/(k − 2) if k > 2 (otherwise undefined).

The corresponding density is symmetric like that of the normal, with
“heavier tails”, and becomes similar to a normal as k →∞. As we
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shall see below, the Student’s t distribution is fundamental to the
computation of confidence intervals for estimated parameters using
experimental data in inverse problems (where typically k � 2).
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