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Outline of Talk

• Motivation: Non-invasive Detection and Characterization of
Occlusion and Cardiac Stenosis

• Inverse Problems and Parameter Estimation: MLE, OLS, GLS

• Computation of Σ, Standard Errors and Confidence Intervals

• Error Analysis and Residual Plots Techniques

• Model Comparison Techniques
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Motivation

• Develop models and inverse problem techniques for detection and
characterization of cardiac stenosis

• Stenosis induced turbulence in arteries produces normal forces on
artery walls–propagated as shear waves to chest surface

Stenosis or Arterial Occlusion
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• Sensors developed at MedAcoustics measure shear waves–need to
understand sensor capabilities, sensitivities, uncertainty in
estimates produced by inverse algorithms–experiments to be
designed with scientists, physicians at Brunel University (Shaw,
Whiteman), Queen Mary Univ and Royal London Hospital
(Greenwald), Barts/London NHS Trust (Birch)

Piezoelectric Sensors
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Shear Waves
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Model Geometry

gel phantoms, pigs, humans
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2-D geometry with multiple chest sensors

9



2-D Model [BL] (internal variable based viscoelastic)
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Relevant model terms:

• radial (r) and tangential (θ) displacement of the shear wave (u1

and u2 respectively)

• ”elastic” stress tensor S(e)
ij and internal strain variables ελ and εklµ

• parameters Cλk
and Cµk

for k = 1, 2 in approximating reduced
relaxation parameter G in Fung’s quasi-linear viscoelastic model

• occulsion parameters q1 and q2 which arise in the inner radius
boundary conditions

Possible parameters to be estimated:

~θ = (q1, q2, Cλk
, Cµk

, νλk
, νµk

)T
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Inverse Problems and Parameter
Estimation: MLE, OLS, and GLS

The Underlying Mathematical and Statistical Models

Inverse or parameter estimation problems in context of
parameterized (with vector parameter ~θ) dynamical system or
mathematical model

d~x

dt
(t) = ~g(t, ~x(t), ~θ) (1)

with observation process

~y(t) = C~x(t; ~θ). (2)
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As usual assume a discrete form of observations–n longitudinal
observations corresponding to

~y(tj) = C~x(tj ; ~θ), j = 1, . . . , n. (3)

In general corresponding observations or data {~yj} will not be
exactly ~y(tj) — must treat this uncertainty pertaining to the
observations with a statistical model for the observation process
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Description of Statistical Model

We consider a statistical model of the form

~Yj = ~f(tj , ~θ0) + ~Ej , j = 1, . . . , n, (4)

where

• ~f(tj , ~θ) = C~x(tj ; ~θ), j = 1, . . . , n, corresponds to solution of
mathematical model at the jth covariate for a particular vector of
parameters ~θ ∈ Rp, ~x ∈ RN , ~f ∈ Rm,

• C is an m×N observation matrix

• ~θ0 represents the “truth” or the parameters that generate the
observations {~Yj}nj=1

• The term ~Ej can represent measurement error, “system
fluctuations” or other phenomena that cause observations to not
fall exactly on the points ~f(tj , ~θ) from the smooth path ~f(t, ~θ)
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• Fluctuations are unknown to modeler—assume ~Ej generated from
a probability distribution that reflects the assumptions regarding
these phenomena, e.g., in a statistical model for pharmacokinetics
of drug in human blood samples, a natural distribution for
~E = (E1, . . . , En)T might be the multivariate normal distribution

• Needs: methodology related to the estimation of the true value of
the parameters ~θ0 from a set Θ of admissible parameters, the
variance of the error var(~Ej) and resulting uncertainties

• Here: two inverse problem methodologies for calculation of
estimates θ̂ for ~θ0: the ordinary least-squares (OLS) and
generalized least-squares (GLS) formulations as well as the
popular maximum likelihood estimate (MLE) formulation
in the case one assumes distributions of the error process {~Ej}
are known
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MLE: Known error processes: Normally
distributed error

• In statistical model, made no mention of the probability
distribution that generates the error ~Ej

• In many situations one readily assumes that errors
~Ej , j = 1, . . . , n, are independent and identically
distributed (iid)

• In some cases, one is able to make further assumptions on
the error, namely that the distribution for ~Ej is known. In
this case maximum likelihood techniques may be used.

• Discuss first for a scalar observation system, i.e., m = 1. Most
common assumption: sufficient evidence to suspect the error is
generated by a normal distribution then willing to assume
Ej ∼ N (0, σ2

0), and hence Yj ∼ N (f(tj , ~θ0), σ2
0).
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Can then obtain expression for determining ~θ0 and σ0 by seeking
maximum over (~θ, σ2) ∈ Θ× (0,∞) of likelihood function for
Ej = Yj − f(tj , ~θ) defined by

L(~Y |~θ, σ2) =
n∏
j=1

1√
2πσ2

exp{− 1
2σ2

[Yj − f(tj , ~θ)]2} (5)

• Resulting solutions θMLE and σ2
MLE are the maximum likelihood

estimators (MLEs) for ~θ0 and σ2
0 , respectively

• Solutions θMLE = θMLE(~Y ) and σ2
MLE = σ2

MLE(~Y ) are random
variables because ~Y is a random variable

• Corresponding maximum likelihood estimates are obtained by
maximizing (5) with {Yj} replaced by a given realization
~y = {yj}—will be denoted by θ̂MLE and σ̂MLE, respectively.
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Maximizing (5) equivalent to maximizing log likelihood

logL(~Y |~θ, σ2) = −n
2

log(2π)− n

2
log σ2 − 1

2σ2

n∑
j=1

[Yj − f(tj , ~θ)]2 (6)

Can determine maximum of (6) by differentiating with respect to ~θ
(with σ2 fixed) and with respect to σ2 (with ~θ fixed), setting the
resulting equations equal to zero and solving for ~θ and σ2. With σ2

fixed we solve ∂

∂~θ
logL(~Y |~θ, σ2) = 0 which is equivalent to

n∑
j=1

[Yj − f(tj , ~θ)]∇f(tj , ~θ) = 0 (7)

Solving (7) is the same as the least squares optimization

θMLE(~Y ) = arg min
~θ∈Θ

J(~Y , ~θ) = arg min
~θ∈Θ

n∑
j=1

[Yj − f(tj , ~θ)]2 (8)
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Next fix ~θ to be θMLE and solve ∂
∂σ2 logL(~Y |θMLE, σ

2) = 0, which
yields

σ2
MLE(~Y ) =

1
n
J(~Y , θMLE) (9)

Note that we can solve for θMLE and σ2
MLE separately – a

desirable feature—one that won’t arise in more complicated
formulations discussed later

The 2nd derivative test verifies that expressions above for θMLE and
σ2

MLE do indeed maximize (6)
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Vector Observations

For vector observations, for the jth covariate tj statistical model
reformulated as

~Yj = ~f(tj , ~θ0) + ~Ej (10)

where ~f ∈Rm and

V0 = var(~Ej) = diag(σ2
0,1, . . . , σ

2
0,m) (11)

for j = 1, . . . , n

• allows for possibility that observation coordinates Y ij may have
different constant variances σ2

0,i, i.e., σ2
0,i does not necessarily

have to equal σ2
0,k

• if (again) there is sufficient evidence to claim errors are i.i.d. and
generated by a normal distribution then ~Ej ∼ Nm(0, V0)
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Can obtain the maximum likelihood estimators θMLE({~Yj}) and
VMLE({~Yj}) for θ0 and V0 by determining the maximum of log of the
likelihood function for ~Ej = ~Yj − ~f(tj , ~θ) defined by

logL({Y 1
j , . . . , Y

m
j }|~θ, V ) = −n

2

m∑
i=1

log σ2
0,i −

1
2

m∑
i=1

1
σ2

0,i

n∑
j=1

[Y ij − f i(tj , ~θ)]2

= −n
2

m∑
i=1

log σ2
0,i −

n∑
j=1

[~Yj − ~f(tj , ~θ)]TV −1[~Yj − ~f(tj , ~θ)].
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Using arguments similar to those given for the scalar case, find
maximum likelihood estimators for ~θ0 and V0 to be

θMLE = arg min
~θ∈Θ

n∑
j=1

[~Yj − ~f(tj , ~θ)]TV −1
MLE[~Yj − ~f(tj , ~θ)] (12)

VMLE = diag

 1
n

n∑
j=1

[~Yj − ~f(tj , θMLE)][~Yj − ~f(tj , θMLE)]T

 (13)

Unfortunately, this is a coupled system—requires some care when
solving numerically–discuss issue further below
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Unspecified Error Distributions and
Asymptotic Theory

• Above examined the estimates of ~θ0 and V0 under the
assumption that the error is normally distributed and is constant
longitudinally.

• But what if it is suspected that the error is not normally
distributed, or the error’s distribution is completely unknown to
the modeler (as in most applications)?

• How should we proceed in estimating ~θ0 and σ0 (or V0) in these
circumstances?

• Two popular estimation procedures for such situations: ordinary
least squares (OLS) and generalized least squares (GLS)
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Ordinary Least Squares (OLS)
Statistical model in the scalar case takes the form

Yj = f(tj , ~θ0) + Ej (14)

where the variance var(Ej) = σ2
0 is constant in longitudinal data

(note that the error’s distribution is not specified). Define

θOLS(~Y ) = arg min
~θ∈Θ

n∑
j=1

[Yj − f(tj , ~θ)]2 (15)

—then θOLS can be viewed as minimizing the distance between the
data and model where all observations are treated as of equal
importance–note that minimizing in (15) corresponds to solving for ~θ
in

n∑
j=1

[Yj − f(tj , ~θ)]∇f(tj , ~θ) = 0 (16)
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Note: θOLS is a random variable (Ej = Yj − f(tj , ~θ) is a random
variable); hence if {yj}nj=1 is a realization of the random process
{Yj}nj=1 then solving

θ̂OLS = arg min
~θ∈Θ

n∑
j=1

[yj − f(tj , ~θ)]2 (17)

provides an realization for θOLS.

Once we have solved for θOLS in (15), we can replace ~θ0 in

σ2
0 =

1
n
E[

n∑
j=1

[Yj − f(tj , ~θ0)]2] (18)

by θ̂OLS to obtain an estimate σ̂2
OLS for σ2

0 .
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Even though the error’s distribution not specified we can use
asymptotic theory to approximate the mean and variance as well
as distribution of the random variable θOLS—more detail below—as
n→∞, find that

θOLS ∼ Np(~θ0, σ
2
0 [χT (~θ0)χ(~θ0)]−1) = Np(~θ0,Σ0) (19)

where the sensitivity matrix χ(~θ) = {χjk} is defined as

χjk(~θ) =
∂f(tj , ~θ)

∂~θk

Distribution of θOLS called sampling distribution and contains
information about uncertainty in our process and the estimates
it produces!!
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However, ~θ0 and σ2
0 are generally unknown–usually instead use

realization ~y = {yj}nj=1 of the random process ~Y to obtain estimate

θ̂OLS = arg min
~θ∈Θ

n∑
j=1

[yj − f(tj , ~θ)]2 (20)

and the bias adjusted estimate

σ̂2
OLS =

1
n− p

n∑
j=1

[yj − f(tj , θ̂)]2 (21)

to use as an approximation in (19).

Note: (21) represents estimate for σ2
0 of (18) with factor 1

n replaced
by factor 1

n−p —- in the linear case the estimate with 1
n can be

shown to be biased downward and the same behavior can be
observed in the general nonlinear case– Note: (18) true even in
general nonlinear case–it does not rely on any asymptotic theories
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Both θ̂ = θ̂OLS and σ̂2 = σ̂2
OLS used to approximate the covariance

matrix
Σ0 ≈ Σ̂ = σ̂2[χT (θ̂)χ(θ̂)]−1. (22)

Can obtain the standard errors SE(θ̂OLS,k) (discussed in more detail
later) for the kth element of θ̂OLS by calculating

SE(θ̂OLS,k) ≈
√

Σ̂kk

Note similarity between the MLE equations (8) and (9), and the
scalar OLS equations (20) and (21). That is, under a normality
assumption for the error, the MLE and OLS formulations are
equivalent
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Vector Observation OLS

For vector observations for the jth covariate tj , assuming variance is
still constant in longitudinal data, statistical model is reformulated as

~Yj = ~f(tj , ~θ0) + ~Ej (23)

where ~f ∈Rm and

V0 = var(~Ej) = diag(σ2
0,1, . . . , σ

2
0,m) (24)

for j = 1, . . . , n. As in MLE case allow for possibility that
observation coordinates Y ij may have different constant variances
σ2

0,i–Note: this formulation also can be used to treat case where V0 is
used to simply scale observations, i.e., V0 = diag(v1, . . . , vm) is
known. In this case the formulation is simply a vector OLS
(sometimes also called a weighted least squares (WLS)).
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Problem consists of finding minimizer

θOLS = arg min
~θ∈Θ

n∑
j=1

[~Yj − ~f(tj , ~θ)]TV −1
0 [~Yj − ~f(tj , ~θ)], (25)

where the procedure weights elements of the vector ~Yj − ~f(tj , ~θ)
according to their variability. (Some authors refer to (25) as a
generalized least squares (GLS) procedure, but we will make use of
this terminology in a different formulation in subsequent discussions).
Just as in the scalar OLS case, θOLS is a random variable (again
because ~Ej = ~Yj − ~f(tj , ~θ) is); hence if {~yj}nj=1 is a realization of the
random process {~Yj}nj=1 then solving

θ̂OLS = arg min
~θ∈Θ

n∑
j=1

[~yj − ~f(tj , ~θ)]TV −1
0 [~yj − ~f(tj , ~θ)] (26)

provides an estimate (realization) θ̂ = θ̂OLS for θOLS.
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By the definition of variance

V0 = diag E

 1
n

n∑
j=1

[~Yj − ~f(tj , ~θ0)][~Yj − ~f(tj , ~θ0)]T

 ,

so an unbiased estimate of V0 for the realization {~yj}nj=1 is

V̂ = diag

 1
n− p

n∑
j=1

[~yj − ~f(tj , θ̂)][~yj − ~f(tj , θ̂)]T

 . (27)

However, the estimate θ̂ requires the (generally unknown) matrix V0

and V0 requires the unknown vector ~θ0—
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——– so we will instead use the following expressions to calculate θ̂
and V̂ :

~θ0 ≈ θ̂ = arg min
~θ∈Θ

n∑
j=1

[~yj − ~f(tj , ~θ)]T V̂ −1[~yj − ~f(tj , ~θ)] (28)

V0 ≈ V̂ = diag

 1
n− p

n∑
j=1

[~yj − ~f(tj , θ̂)][~yj − ~f(tj , θ̂)]T

 (29)

Note: expressions for θ̂ and V̂ constitute a coupled system of
equations—-requires greater effort in implementing a numerical
scheme
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Just as in the scalar case we can determine the asymptotic properties
of the OLS estimator (25). As n→∞, θOLS has the following
asymptotic properties:

θOLS ∼ N (~θ0,Σ0) (30)

where

Σ0 =

 n∑
j=1

DT
j (~θ0)V −1

0 Dj(~θ0)

−1

(31)

and the m× p matrix Dj(~θ) is given by
∂f1(tj ,~θ)
∂θ1

∂f1(tj ,~θ)
∂θ2

· · · ∂f1(tj ,~θ)
∂θp

...
...

...
∂fm(tj ,~θ)

∂θ1

∂fm(tj ,~θ)
∂θ2

· · · ∂fm(tj ,~θ)
∂θp

 .
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Since the true value of the parameters ~θ0 and V0 are unknown their
estimates θ̂ and V̂ will be used to approximate the asymptotic
properties of the least squares estimator θOLS:

θOLS ∼ Np(~θ0,Σ0) ≈ Np(θ̂, Σ̂) (32)

where

Σ0 ≈ Σ̂ =

 n∑
j=1

DT
j (θ̂)V̂ −1Dj(θ̂)

−1

. (33)

Standard errors can then be calculated for the kth element of θ̂OLS

(SE(θ̂OLS,k)) by SE(θ̂OLS,k) ≈
√

Σ̂kk. Again, note similarity between
the MLE equations (12) and (13), and the OLS equations (28) and
(29) for the vector statistical model (23).
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Numerical Implementation: OLS

In scalar statistical model (14), the estimates θ̂ and σ̂ can be solved
for separately (also true of vector OLS) in the case V0 = σ2

0Im, where
Im is the m×m identity)—thus numerical implementation
straightforward - first determine θ̂OLS by (20), then calculate σ̂2

OLS

according to (21)

The estimates θ̂ and V̂ in the case of the vector statistical model
(23), however, require more effort since they are coupled:

θ̂ = arg min
~θ∈Θ

n∑
j=1

[~yj − ~f(tj , ~θ)]T V̂ −1[~yj − ~f(tj , ~θ)] (34)

V̂ = diag

 1
n− p

n∑
j=1

[~yj − ~f(tj , θ̂)][~yj − ~f(tj , θ̂)]T

 (35)
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To solve this coupled system the following iterative process will be
followed:

1. Set V̂ (0) = I and solve for the initial estimate θ̂(0) using (34). Set
k = 0.

2. Use θ̂(k) to calculate V̂ (k+1) using (35).

3. Re-estimate ~θ by solving (34) with V̂ = V̂ (k+1) to obtain θ̂(k+1).

4. Set k = k + 1 and return to 2. Terminate the process and set
θ̂OLS = θ̂(k+1) when two successive estimates for θ̂ are sufficiently
close to one another.
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Generalized Least Squares (GLS)

In OLS formulation, error distribution remained unspecified–however
required the error remain constant in variance in longitudinal
data–assumption may not be appropriate for some data sets whose
error depends on value of observation– A common relative error
model that experimenters use (in this instance for the scalar
observation case) is

Yj = f(tj , ~θ0) (1 + Ej) (36)

where E(Yj) = f(tj , ~θ0) and var(Yj) = σ2
0f

2(tj , ~θ0). Variance
generated in this fashion is non-constant variance. The method we
will use to estimate ~θ0 and σ2

0 can be viewed as a particular form of
the Generalized Least Squares (GLS) method.
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To define the random variable θGLS the following equation must be
solved for the estimator θGLS:

n∑
j=1

wj [Yj − f(tj , θGLS)]∇f(tj , θGLS) = 0, (37)

where Yj obeys (36) and wj = f−2(tj , θGLS). The quantity θGLS is a
random variable, hence if {yj}nj=1 is a realization of the random
process Yj then solving

n∑
j=1

f−2(tj , θ̂)[yj − f(tj , θ̂)]∇f(tj , θ̂) = 0, (38)

for θ̂ gives an estimate θ̂GLS for θGLS
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The GLS estimator has the following asymptotic properties:

θGLS ∼ Np(~θ0,Σ0) (39)

where

Σ0 = σ2
0

(
FT~θ (~θ0)W (~θ0)F~θ(~θ0)

)−1

, (40)

F~θ(~θ) =


∂f(t1,~θ)
∂θ1

∂f(t1,~θ)
∂θ2

· · · ∂f(t1,~θ)
∂θp

...
...

∂f(tn,~θ)
∂θ1

∂f(tn,~θ)
∂θ2

· · · ∂f(tn,~θ)
∂θp

 =


∇f(t1, ~θ)T

...

∇f(tn, ~θ)T


and W−1(~θ) = diag

(
f2(t1, ~θ), . . . , f2(tn, ~θ)

)
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Note that because ~θ0 and σ2
0 are unknown, the estimates θ̂ = θ̂GLS

and σ̂2 = σ̂2
GLS will be used in (40) to calculate

Σ0 ≈ Σ̂ = σ̂2
(
FT~θ (θ̂)W (θ̂)F~θ(θ̂)

)−1

where we take the approximation

σ2
0 ≈ σ̂2

GLS =
1

n− p

n∑
j=1

1

f2(tj , θ̂)
[yj − f(tj , θ̂)]2.

Then approximate standard errors of θ̂GLS by taking square roots of
diagonal elements of Σ̂. NOTE: solutions to (28) and (38) depend
upon the numerical method used to find the minimum or root, and
since Σ0 depends upon ~θ0 and hence its approx on the estimate for ~θ0,
standard errors are therefore affected by numerical method chosen.
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GLS motivation

We note the similarity between (16) and (38). The GLS equation
(38) can be motivated by examining the weighted least squares
(WLS) estimator

θWLS = arg min
~θ∈Θ

n∑
j=1

wj [Yj − f(tj , ~θ)]2 (41)

In many situations where the observation process is well understand,
the weights {wj} may be known. The WLS estimate can be thought
of minimizing the distance between the data and model while taking
into account unequal quality of the observations. If we differentiate
the sum of squares in (41) with respect to ~θ, and then choose
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wj = f−2(tj , ~θ), an estimate θ̂GLS is obtained by solving
n∑
j=1

wj [yj − f(tj , ~θ)]∇f(tj , ~θ) = 0

for ~θ. However, we note the GLS relationship (38) does not follow
from minimizing the weighted least squares with weights chosen as
wj = f−2(tj , ~θ).

Another motivation for the GLS estimating equation (38) can be
given: if the data is distributed according to the gamma distribution,
then the maximum-likelihood estimator for ~θ is the solution to

n∑
j=1

f−2(tj , ~θ)[Yj − f(tj , ~θ)]∇f(tj , ~θ) = 0,

which is equivalent to (38). The connection between the MLE and
our GLS method is reassuring, but it also poses another interesting
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question: What if the variance of the data is assumed to not depend
on the model output f(tj , ~θ), but rather on some function g(tj , ~θ)
(i.e. var(Yj) = σ2

0g
2(tj , ~θ) = σ2

0/wj)? Is there a corresponding
maximum likelihood estimator of ~θ whose form is equivalent to the
appropriate GLS estimating equation (wj = g−2(tj , ~θ))

n∑
j=1

g−2(tj , ~θ)[Yj − f(tj , ~θ)]∇f(tj , ~θ) = 0 ? (42)

In their text, Carroll and Rupert briefly describe how distributions
belonging to the exponential family of distributions generate
maximum-likelihood estimating equations equivalent to (42).
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Numerical Implementation of the GLS
Procedure
Recall that an estimate θ̂GLS can either be solved directly according
to (38) or iteratively using a procedure. An iterative procedure as is
summarized below:

1. Estimate θ̂GLS by θ̂(0) using the OLS equation (15). Set k = 0.

2. Form the weights ŵj = f−2(tj , θ̂(k)).

3. Re-estimate θ̂ by solving
n∑
j=1

ŵj [yj − f(tj , ~θ)]∇f(tj , ~θ) = 0

to obtain θ̂(k+1).

4. Set k = k + 1 and return to 2. Terminate the process when two
successive estimates for θ̂GLS are ”close” to one another.
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One finds in practice that the above procedure sometimes does not
adequately estimate ~θ0, so we instead outline a different numerical
algorithm with which one often can achieve better results. Recall
that the above iterative procedure was formulated by maximizing
(over ~θ ∈ Θ)

n∑
j=1

f−2(tj , θ̃)[yj − f(tj , ~θ)]2

and then updating the weights wj = f−2(tj , θ̃) after each iteration.
Thus, an alternative iterative procedure involves completing the
following steps:

1. Estimate θ̂GLS by θ̂(0) using the OLS equation (15). Set k = 0.

2. Form the weights ŵj = f−2(tj , θ̂(k)).
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3. Re-estimate θ̂ by solving

θ̂(k+1) = arg min
θ∈Θ

n∑
j=1

ŵj

(
yj − f

(
tj , ~θ

))2

to obtain the k + 1 estimate for θ̂GLS.

4. Set k = k + 1 and return to 2. Terminate the process when two
of the successive estimates for θ̂GLS are sufficiently close.

One would hope that after a sufficient number of iterations ŵj would
converge to f−2(tj , θ̂GLS). Fortunately, under reasonable conditions, if
the process enumerated above is continued a sufficient number of
times [?], then ŵj → f−2(tj , θ̂GLS).
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Computation of Σ, Standard Errors and
Confidence Intervals

Return to case of n scalar longitudinal observations, consider OLS
case extension of ideas to vectors is completely straight-forward).
Assume statistical model

Yj ≡ f(tj , ~θ0) + Ej , j = 1, 2, . . . , n, (43)

where f(tj , ~θ0) is the model for the observations in terms of the state
variables and ~θ0 ∈ Rp is a set of theoretical “true” parameter values
(assumed to exist in a standard statistical approach). Further assume
that the errors εj , j = 1, 2, . . . , n, are (i.i.d.) random variables with
mean E[Ej ] = 0 and constant variance var[Ej ] = σ2

0 , where σ2
0 is

unknown. The observations Yj are then i.i.d. with mean
E[Yj ] = f(tj , ~θ0) and variance var[Yj ] = σ2

0 .
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Recall that in the ordinary least squares (OLS) approach, we seek to
use a realization {yj} of the observation process {Yj} along with the
model to determine a vector θ̂nOLS where

θ̂nOLS = arg min Jn(~θ) =
n∑
j=1

[yj − f(tj , ~θ)]2. (44)

Since Yj is a random variable, the corresponding estimator θn = θnOLS

(here we wish to emphasize the dependence on the sample size n) is
also a random variable with a distribution called the sampling
distribution. Knowledge of this sampling distribution provides
uncertainty information (e.g., standard errors) for the numerical
values of θ̂n obtained using a specific data set {yj}.
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Under reasonable assumptions on smoothness and regularity
(smoothness requirements for model solutions are readily verified
using continuous dependence results for differential equations in most
examples; regularity requirements include, among others, conditions
on how the observations are taken as sample size increases, i.e., as
n→∞), standard nonlinear regression approximation theory for
asymptotic (as n→∞) distributions can be invoked. Theory yields
that sampling distribution for the estimator θn(Y ), where
Y = {Yj}nj=1, is approximately a p-multivariate Gaussian with
mean E[θn(Y )] ≈ ~θ0 and covariance matrix
cov[θn(Y )] ≈ Σ0 = σ2

0 [χT (~θ0)χ(~θ0)]−1. Here χ(~θ) = F~θ(~θ) is the n× p
sensitivity matrix with elements

χjk(~θ) =
∂f(tj , ~θ)
∂θk

and F~θ(~θ) ≡ (f1~θ(~θ), . . . , fn~θ(~θ))
T .
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That is, for n large, the sampling distribution approximately satisfies

θnOLS(Y ) ∼ Np(~θ0, σ
2
0 [χT (~θ0)χ(~θ0)]−1) := Np(~θ0,Σ0) (45)

There are typically several ways to compute the matrix F~θ. First, the
elements of the matrix χ = (χjk) can always be estimated using the
forward difference

χjk(~θ) =
∂f(tj , ~θ)
∂θk

≈ f(tj , ~θ + hk)− f(tj , ~θ)
|hk|

,

where hk is a p-vector with a nonzero entry in only the kth

component. But, of course, the choice of hk can be problematic in
practice.

50



Alternatively, if the f(tj , ~θ) correspond to longitudinal observations
~y(tj) = C~x(tj ; ~θ) of solutions ~x ∈ RN to a parameterized N -vector
differential equation system ~̇x = ~g(t, ~x(t), ~θ), then one can use the
N × p matrix sensitivity equations

d

dt

(
∂~x

∂~θ

)
=
∂~g

∂~x

∂~x

∂~θ
+
∂~g

∂~θ

to obtain
∂f(tj , ~θ)
∂θk

= C ∂~x(tj , ~θ)
∂θk

.

Finally, in some cases the function f(tj , ~θ) may be sufficiently simple
so as to allow one to derive analytical expressions for the components
of F~θ.
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Since ~θ0, σ0 are unknown, we will use their estimates to make the
approximation

Σ0 = σ2
0 [χT (~θ0)χ(~θ0)]−1 ≈ Σ̂(θ̂nOLS) = σ̂2[χT (θ̂nOLS)χ(θ̂nOLS)]−1. (46)

where the approximation σ̂2 to σ2
0 , as discussed earlier, is given by

σ2
0 ≈ σ̂2 =

1
n− p

n∑
j=1

[yj − f(tj , θ̂nOLS)]2. (47)
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Standard errors to be used in the confidence interval calculations are
thus given by SEk(θ̂n) =

√
Σkk(θ̂n), k = 1, 2, . . . , p.

To compute confidence intervals (at the 100(1− α)% level) for
estimated parameters, define confidence level parameters associated
with estimated parameters so that

P{θ̂nk − t1−α/2SEk(θ̂n) < θnk < θ̂nk + t1−α/2SEk(θ̂n)} = 1− α, (48)

where α ∈ [0, 1] and t1−α/2 ∈ R+. For small α (e.g., α = .05 for 95%
confidence intervals), the critical value t1−α/2 is computed from
Student’s t distribution tn−p with n−p degrees of freedom. The value
of t1−α/2 is determined by P{T ≥ t1−α/2} = α/2 where T ∼ tn−p.
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When one is taking longitudinal samples corresponding to solutions
of a dynamical system, the n× p sensitivity matrix depends explicitly
on where in time the observations are taken when f(tj , ~θ) = Cx(tj , ~θ)
as mentioned above. That is, the sensitivity matrix

χ(~θ) = F~θ(~θ) =

(
∂f(tj , ~θ)
∂θk

)
depends on the number n and the nature (e,g., how taken) of the
sampling times {tj}. Moreover, it is the matrix [χTχ]−1 in (46) and
the parameter σ̂2 in (47) that ultimately determine the SE and CI.
At first investigation of (47), it appears that an increased number n
of samples will drive σ̂2 (and hence the SE) to zero as long as this is
done in a way to maintain a bound on the residual sum of squares in
(47).
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However, we observe that the condition number of the matrix χTχ is
also very important in these considerations and increasing the
sampling could potentially adversely affect the inversion of χTχ. In
this regard, we note that among the important hypotheses in the
asymptotic statistical theory (see p. 571 of [SeWi]) is

1
n
χT (~θ)χ(~θ)→ X (~θ) as n→∞

for some nonsingular matrix X (~θ0). It is this condition that is
rather easily violated in practice when one is dealing with data from
differential equation systems, especially near an equilibrium or steady
state (see the examples of [BEG]).
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All of the above theory readily generalizes to vector systems with
partial, non-scalar observations. Suppose we have a vector system
with partial vector observations: we have m coordinate observations
where m ≤ N . In this case, we have

d~x

dt
(t) = ~g(t, ~x(t), ~θ) (49)

and
~yj = ~f(tj , ~θ0) + ~εj = C~x(tj , ~θ0) + ~εj , (50)

where C is an m×N matrix and ~f ∈ Rm, ~x ∈ RN . Assume that
different observation coordinates fi may have different variances σ2

i

associated with different coordinates of the errors Ej , then we have

~Ej ∼ Nm(~0, V0)

where V0 = diag(σ2
0,1, ..., σ

2
0,m). May follow similar asymptotic

theory to calculate approximate covariances, SE and CI.
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Since the computations for standard errors and confidence intervals
(and also model comparison tests depend on an asymptotic limit
distribution theory, one should interpret the findings as sometimes
crude indicators of uncertainty inherent in the inverse problem
findings. Nonetheless, it is useful to consider the formal
mathematical requirements underpinning these techniques.

Among the more readily checked hypotheses are those of the
statistical model requiring that the errors Ej , j = 1, 2, . . . , n, are
independent identically distributed (i.i.d.) random variables with
mean E[Ej ] = 0 and constant variance var[Ej ] = σ2

0 .
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• After carrying out the estimation procedures, one can readily
plot the residuals rj = yj − f(tj , θ̂nOLS) vs. time tj and the
residuals vs. the resulting estimated model/ observation
f(tj , θ̂nOLS) values. A random pattern for the first is strong
support for validity of independence assumption; a non
increasing, random pattern for latter suggests assumption of
constant variance may be reasonable.

• The underlying assumption that sampling size n must be large
(recall the theory is asymptotic in that it holds as n→∞) is not
so readily “verified”–often ignored (albeit at the user’s peril in
regard to the quality of the uncertainty findings).

Often asymptotic results provide remarkably good approximations to
the true sampling distributions for finite n. However, in practice there
is no way to ascertain whether theory holds for a specific example.
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Investigation of Statistical Assumptions

Form of data dictates which method

• OLS (for constant variance obs. Yj = f(tj , ~θ0) + Ej)

• GLS (for nonconstant variance obs. Yj = f(tj , ~θ0)(1 + Ej))

should be used.

Note that in order to obtain the correct standard errors for a set of
data the OLS method (and corresponding asymptotic formulas) must
be used with constant variance generated data, while the GLS
method (and corresponding asymptotic formulas) should be applied
to nonconstant variance generated data.

Not doing so can lead to incorrect conclusions. In either case, the
standard error calculations are not valid unless the correct formulas
(which depends on the error structure) are employed.
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Unfortunately, it is very difficult to ascertain the structure of the
error, and hence the correct method to use, without a priori
information. Although the error structure cannot definitively be
determined, the two residuals tests can be performed after the
estimation procedure has been completed to assist in concluding
whether the correct asymptotic statistics were used or not.
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Residual Plots

One can carry out simulation studies with a proposed mathematical
model to assist in understanding the behavior of the model in IP
with different types of date with respect to mis-specification of the
statistical model. For example, we consider a statistical model with
constant variance noise

Yj = f(tj , ~θ0) +
α

100
Ej , Var(Yj) =

α2

10000
σ2,

and nonconstant variance noise

Yj = f(tj , ~θ0)(1 +
α

100
Ej), Var(Yj) =

α2

10000
σ2 f2(tj , ~θ0).

We can obtain a data set by considering a realization {yj}nj=1 of the

random process {Yj}nj=1 and then calculate an estimate θ̂ of ~θ0 using
the OLS or GLS procedure.
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We will then use the residuals rj = yj − f(tj , θ̂) to test whether the
data set is i. i. d. and possesses the assumed variance structure. If a
data set has constant variance error then

Yj = f(tj , ~θ0) + Ej or Ej = Yj − f(tj , ~θ0).

Since it is assumed that the error Ej is i.i.d. a plot of the residuals
rj = yj − f(tj , θ̂) vs. tj should be random. Also, the error in the
constant variance case does not depend on f(tj , θ0), and so a plot of
the residuals rj = yj − f(tj , θ̂) vs. f(tj , θ̂) should also be random.
Therefore, if the error has constant variance then a plot of the
residuals rj = yj − f(tj , θ̂) against tj and against f(tj , θ̂)) should both
be random. If not, then the constant variance assumption is suspect.

62



What should we expect if this residual test is applied to a data set
that has nonconstant variance generated error? That is, what if the
data is incorrectly assumed to have constant variance error when in
fact it has nonconstant variance error? Since in the nonconstant
variance example, Rj = Yj − f(tj , ~θ0) = f(tj , ~θ0) Ej depends upon the
deterministic model f(tj , ~θ0), we should expect that a plot of the
residuals rj = yj − f(tj , θ̂) vs. tj should exhibit some type of pattern.
Also, the residuals actually depend on f(tj , θ̂) in the nonconstant
variance case, and so as f(tj , θ̂) increases the variation of the
residuals rj = yj − f(tj , θ̂) should increase as well. Thus
rj = yj − f(tj , θ̂) vs. f(tj , θ̂) should have a fan shape in the
nonconstant variance case.
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If a data set has nonconstant variance generated data then

Yj = f(tj , ~θ0) + f(tj , ~θ0) Ej or Ej =
Yj − f(tj , ~θ0)

f(tj , ~θ0)
.

If the distributions Ej are i.i.d. then a plot of the modified residuals
rmj = (yj − f(tj , θ̂))/f(tj , θ̂) vs. tj should be random in the
nonconstant variance generated data. A plot of
rmj = (yj − f(tj , θ̂))/f(tj , θ̂) vs. f(tj , θ̂) should also be random.

Another question of interest concerns the case in which the data is
incorrectly assumed to have nonconstant variance error when in fact
it has constant variance error? Since Yj − f(tj , ~θ0) = Ej in the
constant variance case, we should expect that a plot of
rmj = (yj − f(tj , θ̂))/f(tj , θ̂) vs. tj as well as that for
rmj = (yj − f(tj , θ̂))/f(tj , θ̂) vs. f(tj , θ̂) should possess some distinct
pattern.
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Two further issues re residual plots: As we shall see by examples,
some data sets might have values that are repeated (or nearly
repeated a large number of times (for example when sampling near
an equilibrium for the mathematical model or when sampling a
periodic system over many periods). If a certain value is repeated
numerous times (e.g., frepeat) then any plot with f(tj , θ̂) along the
horizontal axis should have a cluster of values along the vertical line
x = frepeat. This feature can easily be removed by excluding the data
points corresponding to these high frequency values. Also, note that
the model value f(tj , θ̂) could possibly be zero or very near zero, in

which case the modified residuals Rmj = Yj−f(tj ,θ̂)

f(tj ,θ̂)
would be

undefined or extremely large. To remedy this situation one might
exclude values very close to zero. In our examples below, estimates
obtained using a truncated data set will be denoted by θ̂tcv

OLS for
constant variance data and θ̂tncv

OLS for nonconstant variance data.
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Example using Residual Plots

We illustrate residual plot techniques by exploring a widely studied
model - the logistic population growth model of Verhulst/Pearl

ẋ = rx(1− x

K
), x(0) = x0.

Here K is the population’s carrying capacity, r is the intrinsic
growth rate and x0 is the initial population size. This well-known
logistic model describes how populations grow when constrained by
resources or competition. The closed form solution of this simple
model is given by

x(t) =
K x0e

rt

K + x0 (ert − 1)
.
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The left plot in Figure 1 depicts the solution of the logistic model for
K = 17.5, r = .7 and x0 = 1 for 0 ≤ t ≤ 25. If high frequency
repeated or nearly repeated values (i.e., near the initial value x0 or
near the the asymptote x = K) are removed from the original plot,
the resulting truncated plot is given in the right panel of Figure 1
(there are no near zero values for this function).
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Figure 1: Original and truncated logistic curve with K = 17.5, r = .7
and x0 = .1.
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For this example we generated both constant variance and
nonconstant variance noisy data and obtained estimates θ̂ of
~θ0 = (K, r, x0) by applying either the OLS or GLS method to a
realization {yj}nj=1 of the random process {Yj}nj=1. The estimates for
each method and error structure are given in Tables 1-4 (the
superscript tcv and tncv denote the estimate obtained using the
truncated data set). As expected, both methods do a good job of
estimating ~θ0, however the error structure was not always correctly
specified since incorrect asymptotic formulas were used.
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α ~θinit
~θ0 θ̂cv

OLS SE(θ̂cv
OLS) θ̂tcv

OLS SE(θ̂tcv
OLS)

5 17 17.5 1.7500e+001 1.5800e-003 1.7494e+001 6.4215e-003

5 .8 .7 7.0018e-001 4.2841e-004 7.0062e-001 6.5796e-004

5 1.2 .1 9.9958e-002 3.1483e-004 9.9702e-002 4.3898e-004

Table 1: Estimation using the OLS procedure with constant variance
data for α = 5

α ~θinit
~θ0 θ̂cv

GLS SE(θ̂cv
GLS) θ̂tcv

GLS SE(θ̂tcv
GLS)

5 17 17.5 1.7500e+001 1.3824e-004 1.7494e+001 9.1213e-005

5 .8 .7 7.0021e-001 7.8139e-005 7.0060e-001 1.6009e-005

5 1.2 .1 9.9938e-002 6.6068e-005 9.9718e-002 1.2130e-005

Table 2: Estimation using the GLS procedure with constant variance
data for α = 5
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α ~θinit
~θ0 θ̂ncv

OLS SE(θ̂ncv
OLS) θ̂tncv

OLS SE(θ̂tncv
OLS )

5 17 17.5 1.7499e+001 2.2678e-002 1.7411e+001 7.1584e-002

5 .8 .7 7.0192e-001 6.1770e-003 7.0955e-001 7.6039e-003

5 1.2 .1 9.9496e-002 4.5115e-003 9.4967e-002 4.8295e-003

Table 3: Estimation using the OLS procedure with nonconstant vari-
ance data for α = 5

α ~θinit
~θ0 θ̂ncv

GLS SE(θ̂ncv
GLS) θ̂tncv

GLS SE(θ̂tncv
GLS )

5 17 17.5 1.7498e+001 9.4366e-005 1.7411e+001 3.1271e-004

5 .8 .7 7.0217e-001 5.3616e-005 7.0959e-001 5.7181e-005

5 1.2 .1 9.9314e-002 4.4976e-005 9.4944e-002 4.1205e-005

Table 4: Estimation using the GLS procedure with nonconstant vari-
ance data for α = 5
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When the OLS method was applied to nonconstant variance data
and the GLS method was applied to constant variance data, the
residual plots do reveal that the error structure was misspecified. For
instance, the plot of the residuals for θ̂ncv

OLS given in Figures 4 and 5
reveal a fan shaped pattern, which indicates the constant variance
assumption is suspect. In addition, the plot of the residuals for θ̂cv

GLS

given in Figures 6 and 7 reveal an inverted fan shaped pattern, which
indicates the nonconstant variance assumption is suspect. As
expected, when the correct error structure is specified, the i.i.d. test
and the model dependence test both display a random pattern
(Figures 2, 3 and Figures 8, 9).

Also, included in the right panel of Figures 2 - 9 are the residual
plots with the truncated data sets. In those plots only model values
between one and seventeen were considered (i.e. 1 ≤ yj ≤ 17). Doing
so removed the dense vertical lines in the plots with f(tj , θ̂) along the
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x-axis. Nonetheless, the conclusions regarding the error structure
remain the same.
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Figure 2: Original and truncated logistic curve for θ̂cvOLS with α = 5.
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Figure 3: Original and truncated logistic curve for θ̂cvOLS with α = 5.
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Figure 4: Original and truncated logistic curve for θ̂ncvOLS with α = 5.
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Figure 5: Original and truncated logistic curve for θ̂ncvOLS with α = 5.
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Figure 6: Original and truncated logistic curve for θ̂cvGLS with α = 5.
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Figure 7: Original and truncated logistic curve for θ̂cvGLS with α = 5.
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Figure 8: Original and truncated logistic curve for θ̂ncvGLS with α = 5.
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Figure 9: Original and truncated logistic curve for θ̂ncvGLS with α = 5.
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In addition to the residual plots, we can also compare the standard
errors obtained for each simulation. At a quick glance of Tables 1 - 4,
the standard error of the parameter K in the truncated data set is
larger than the standard error of K in the original data set. This
behavior is expected. If we remove the ”flat” region in the logistic
curve, we actually discard measurements with high information
content about the carrying capacity K [BEG]. Doing so reduces the
quality of the estimate K. Another interesting observation is that the
standard errors of the GLS estimate are more optimistic than that of
the OLS estimate, even when the non-constant variance assumption
is wrong. This example further solidifies the conclusion we will make
with the stenosis model described below - before one reports an
estimate and corresponding standard errors, there needs to be some
assurance that the proper error structure has been specified.
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Shear Wave Model Residual Plots

The residual tests presented worked very well on the logistic model
example. We also applied these tests to the shear wave propagation
model outlined earlier. The setup for the tests is exactly the same as
was performed earlier - the OLS and GLS methods were used to
estimate ~θ0 on data sets with constant and nonconstant variance
noise. Also, to avoid the dense vertical lines and division by zero we
also considered the truncated data sets as well. Looking at Figure 10
there are high frequency repeated values at f(tj , ~θ0) = 0 and
f(tj , ~θ0) = −.02; thus the truncated data set will not include model
values that are near zero or −.02 (which simultaneously takes care of
dividing by zero).
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Figure 10: 8th sensor’s true plot, and a histogram of the model’s values
with 20 bins for α = 3.
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As in the logistic model studied earlier, both methods do a good job
at estimating ~θ0 in the shear wave propagation model, however the
error structure was not always correctly specified. That is, the OLS
method was applied to nonconstant variance data and the GLS
method was applied to constant variance data. Just as in the logistic
model example, the residual plots reveal that the error structure was
misspecified. For instance, the plot of the residuals for θ̂ncv

OLS given in
Figure 13 reveals a fan shaped pattern, which indicates the constant
variance assumption is suspect. In addition, the plot of the residuals
for θ̂cv

GLS given in Figure 15 reveals the residuals have a deterministic
structure, which indicates the nonconstant variance assumption is
suspect. As expected, when the correct error structure is assumed
the i.i.d. test and the model dependence test both display a random
pattern (Figures 11 and 17).
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Figures 12, 14, 16 and 18 also display the residual and modified
residual plots with the truncated data sets. Using these removed the
dense vertical lines in the plots with f(tj , θ̂) along the x-axis. More
importantly, though, the modified residuals no longer blowup in the
truncated data set, making the conclusions regarding the error
structure straightforward.
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Figure 11: 8th sensor’s residual plots for θ̂cvOLS with α = 3.
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Figure 12: 8th sensor’s residual plots for θ̂cvOLS with α = 3 and truncated
data.
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Figure 13: 8th sensor’s residual plots for θ̂ncvOLS with α = 3.
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Figure 14: 8th sensor’s residual plots for θ̂ncvOLS with α = 3 and truncated
data.
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Figure 15: 8th sensor’s residual plots for θ̂cvGLS with α = 3.
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Figure 16: 8th sensor’s residual plots for θ̂cvGLS with α = 3 and truncated
data.
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Figure 17: 8th sensor’s residual plots for θ̂ncvGLS with α = 3.
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Figure 18: 8th sensor’s residual plots for θ̂ncvGLS with α = 3 and truncated
data.
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